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ABSTRACT
Agent-based simulation is crucial for modeling complex human be-
havior, yet traditional approaches require extensive domain knowl-
edge and large datasets. In data-scarce healthcare settings where
historic and counterfactual data are limited, large language models
(LLMs) offer a promising alternative by leveraging broad world
knowledge. This study examines an LLM-driven simulation of a
maternal mobile health program, predicting beneficiaries’ listen-
ing behavior when they receive health information via automated
messages (control) or live representatives (intervention). Since un-
certainty quantification is critical for decision-making in health
interventions, we propose an LLM epistemic uncertainty estima-
tion method based on binary entropy across multiple samples. We
enhance model robustness through ensemble approaches, improv-
ing F1 score and model calibration compared to individual models.
Beyond direct evaluation, we take a decision-focused approach,
demonstrating how LLM predictions inform intervention feasibility
and trial implementation in data-limited settings. The proposed
method extends to public health, disaster response, and other do-
mains requiring rapid intervention assessment under severe data
constraints. All code and prompts used for this work can be found
at https://github.com/sarahmart/LLM-ABS-ARMMAN-prediction.
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1 INTRODUCTION
Developing and deploying effective healthcare interventions in
under-served regions often requires substantial time and resource
investments. However, the absence of historical data or prior evalu-
ations often makes it difficult to assess the efficacy of new health
programs. Health workers and program managers may identify
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promising interventions, but the high costs of running trials or
large-scale implementations complicate prioritization. To address
this, we explore the potential of large language models (LLMs)
for early-stage intervention assessment in data-deficient contexts,
where behavioral data is unavailable and decision-making relies
solely on contextual, population, and demographic information.

LLMs encode vast amounts of world knowledge, allowing them
to approximate counterfactual agent-based predictions of individual
behavior under hypothetical interventions. While these predictions
do not constitute causal counterfactuals, they can provide plausible
behavioral simulations based on encoded sociodemographic priors
[34]. Our framework leverages these capabilities to assess maternal
health programs before implementation.

Our study focuses on ARMMAN, a maternal health non-
governmental organization in India that operates the mMitra pro-
gram [4], an automated weekly call service delivering health mes-
sages to pregnant women and new mothers. While the programme
has demonstrated success in improving health outcomes, sustaining
engagement remains challenging [4]. Live service calls by health
workers are used to support high-risk mothers, but resource con-
straints necessitate precise targeting. Currently, this targeting pro-
cess follows a two-stage predictive framework: first, training a
model to predict listening behavior, then using a Restless Multi-
Armed Bandit [31] to allocate resources. While this approach ef-
fectively assigns live service calls, it requires extensive historical
training data. There is no solution for low-data settings, such as
evaluating interventions in new locations or under novel conditions.
To explore whether LLM-powered agent-based predictions can pro-
vide robust appraisals in such settings, this study reimagines the
existing mMitra program as an intervention not yet implemented.
Given contextual details about the program and sociodemographic
characteristics of potential participants, we prompt an LLM acting
as a mother (agent) to predict binary engagement.

Different LLMs possess varying world knowledge, make predic-
tions with different levels of uncertainty, and encode distinct biases.
To enhance robustness and model calibration, we compare multiple
LLMs and ensemble their predictions. Inspired by team-based agent
collaboration frameworks [18, 19], we evaluate three ensembling
strategies: direct averaging, epistemic uncertainty-weighted aggre-
gation, and lowest-uncertainty prediction selection. We investigate
their ability to balance robustness and calibration while mitigat-
ing biases in individual models, and assess their effectiveness in
terms of predictive accuracy, F1 score, and calibration. Additionally,
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we adopt a decision-focused approach to evaluate how well LLM-
based predictions support real-world decisions about whether to
implement interventions in data-deficient contexts.

Contributions
We (1) introduce an LLM-based approach for prioritizing inter-
ventions and estimating their impact in the absence of historical
behavioral data, and when real-world experimentation is limited
or infeasible; (2) comprehensively compare and evaluate multiple
ensembling methods for LLM prediction, demonstrating their ef-
fects on accuracy, F1 score, and log-likelihood; and (3) introduce a
decision-focused evaluation pipeline leveraging LLM predictions
and counterfactual modeling to guide intervention assessment in
resource-constrained social good settings. While our primary focus
is maternal health, the framework is generalizable to other domains
requiring rapid, data-efficient decision-making, such as disaster
response, pandemic control, and targeted social programs.

2 RELATEDWORK
Agent-Based Modeling for Social Good. Agent-based modeling

(ABM) has been widely used for public health, social welfare, and
resource allocation [9, 35]. Successful applications of automated
agents include pilot simulations for battlefield environments [27],
airport evacuation modeling [29], training systems for disaster
incident commanders [24], and task allocation and discovery for
dynamic disaster response [20]. ABM has also demonstrated suc-
cess in real implementations of maternal mobile health (mHealth)
programs [30]. These models allow researchers and policymakers to
experiment with virtual populations, identifying how different in-
terventions might affect outcomes [9]. However, traditional ABMs
typically rely on hand-crafted rules and historical time-series data
to model agent behavior. In data-deficient settings, this dependence
on dense behavioral records poses a significant challenge, as real-
world datasets are often sparse or incomplete.

Recent advances in foundation models and LLMs suggest a new
paradigm of simulation agents that encode extensive world knowl-
edge [35]. Unlike handcrafted ABMs, LLM-based agents can gen-
erate counterfactual behavioral predictions even in low-data en-
vironments, offering more flexible and adaptive simulations. This
capability is pertinent in AI for social impact contexts, where tradi-
tional modeling pipelines are often labor- and resource-intensive
and domain-specific, limiting applicability and scalability [35]. Ad-
ditionally, [5] discusses the integration of LLMs into ABM across
various fields, including public health and social welfare. By incor-
porating LLMs, ABMs can simulate complex human behavior and
interactions more effectively, even in data-sparse environments.
However, limitations of LLM-based simulations, including ensuring
their reliability and interpretability, and their real-world effective-
ness remain underexplored [5]. Future research must validate these
models through empirical studies to assess their reliability and
robustness in real decision-making scenarios.

Predicting engagement in maternal healthcare initiatives rel-
evant for large-scale mHealth programs [30]. Although models
like Markovian restless bandits [30, 31] can optimize intervention
resources, these approaches face limitations in non-Markovian
contexts, particularly with multiple interventions or varied user

behavior [30]. Moreover, standard ABMs offer little insight into
counterfactual outcomes, as they rely on observed behaviour his-
tories. In contrast, LLM agent simulations can hypothesize novel
interactions by encoding prior world knowledge.

LLMs for Human Behavior Prediction. LLMs have demonstrated
considerable potential for approximating human behavior by cap-
turing language comprehension, cognitive heuristics, and common
human systematic biases [8]. Recent studies have explored LLMs
as proxies in social experiments, using value injection fine-tuning
techniques to predict opinions [12], constructing simulacra that
can produce personified responses for given characters [32], and
demonstrating that LLMs perform better than traditional cognitive
models in predicting human behavior in sequential decision-making
tasks [21]. These advances hint at the potential for using LLMs to
predict behavior of participants in health-related trials. However,
challenges persist in calibrating LLM outputs, addressing overcon-
fidence, and managing bias and variance [5].

LLM prediction ensembling. Previous work highlights advantages
of including diverse agents in multi-agent teams, demonstrating
that a collection of individually weaker agents can outperform
uniform teams of individually superior agents [10, 18, 19]. Recent
studies extend this to LLM ensembles, showing how techniques
such as maximizing diversity [28], using sampling-and-votingmeth-
ods at scale [16], and pairwise ranking with generative fusion [11]
can yield notable performance gains over component LLM models.
Building on these insights, we harness ensembling to stabilize and
refine LLM-based behavior predictions, targeting applications in
maternal health programs where reliable and diverse agent per-
spectives are important in guiding effective interventions.

Uncertainty Estimation of LLM predictions. Uncertainty quantifi-
cation is vital in high-stakes settings where inaccurate predictions
may lead to ineffective or even harmful outcomes. While accurate
confidence estimates enable more reliable decision-making—where
a model’s certainty should be correlated with its correctness
[33]—current LLM prediction methods often overlook uncertainty
or fail to incorporate it systematically in ensembling [13]. Recent
efforts distinguish epistemic uncertainty—reflecting gaps in model
knowledge—from aleatoric uncertainty, arising from entropy in
the underlying data distribution [1, 2]. These studies propose it-
erative prompting techniques to approximate uncertainties from
LLM predictions. Since LLMs predict tokens from a vast textual
corpus, they must manage both inherent randomness in language
and data (aleatoric uncertainty), and gaps in their own knowledge
(epistemic uncertainty). This suggests LLMs naturally contain inter-
nal representations of uncertainty that can be estimated to provide
indications of model confidence [2].

3 METHOD
3.1 Data, Models & Prompting

Data. We have access to anonymized data from ARMMAN’s
mMitra program on 3000 mothers over 40 weeks. We consider two
groups—a control group where all mothers receive only automated
calls with health messages each week of the program, and an inter-
vention group, where a random subset of mothers receives a live



call from a health worker instead of the automated message for a
specific week. Intervention calls convey the same information as
automated messages, tailored to the mother’s stage of pregnancy
or postpartum period. No mother receives an intervention more
than once, and all intervention calls occur in the first six weeks.

For each mother, we consider binary actions—whether a
mother received a live call or not—and corresponding continuous
states—weekly listening times to health messages. To define engage-
ment, listening times are converted to binary engagement states,
where engagement corresponds to listening to a message for more
than 30 seconds, while listening less (including non-answering) is
considered unengaged for that week1. The LLMs’ prediction task is
to classify whether a mother will engage or not in a given week.

Each mother is associated with a set of numerically encoded
sociodemographic features (Table 1). We assume contextual infor-
mation about the program and a general population of mothers who
may enroll is available. Specifically, we assume mothers are identi-
fied through maternal health clinic visits and provide participation
consent. In our framework, LLMs act as mothers, making engage-
ment predictions based on given sociodemographic profiles and
program details, leveraging prior world knowledge about health
interventions, telehealth adoption, and behavioral responses to
generate predictions regarding a mother’s engagement.

Models and hyper-parameters. For this study, we evaluate a se-
lection of heavyweight and lightweight LLMs from Google, Ope-
nAI, and Anthropic to capture a representative range of closed-
source LLM capabilities. Heavyweight models include Gemini 1.5
Pro [7, 26] and GPT-4o [23], while lightweight models include
Gemini 1.5 Flash [6], GPT-4o mini [22], and Claude Instant 1.2 [3].
Hyperparameters for each model are detailed in Table 2.

Prompting. We evaluate multiple intervention and control sce-
narios, described in Section 3.2. In each scenario, all models receive
the same set of five prompts per mother per time step. Prompts
vary slightly in wording but convey the same core information,
including a description of the mHealth program, the sociodemo-
graphic characteristics of the mother, and a request for a prediction
regarding her engagement at that time step.

All prompts state that simulation is weekly and specify the mode
of message delivery—as a brief automated message or live ser-
vice call from a health worker containing the same information. A
sample prompt is provided in Box 12. Characteristics are listed in
Table 1, and key differences between control (orange) and inter-
vention (green) prompts are highlighted. Since minor variations in
prompt wording can affect LLM outputs [8, 25], we keep differences
between intervention and control versions of each prompt minimal
to maintain comparability. Each model is queried five times per
prompt, yielding 25 predictions per mother per time step.

3.2 Simulation Scenarios
We examine three simulation settings: (1) intervention, (2) coun-
terfactual, and (3) control. These allow us to evaluate intervention
impact, compare predicted outcomes under counterfactual condi-
tions, and establish a baseline for engagement without intervention.

1This aligns with engagement criteria used in previous evaluations of mMitra [30, 31].
2For the full set of prompts used in both intervention and control scenarios, see here.

Box 1: Sample LLM Prompt
<no intervention version><intervention version>

You are a mother enrolled in the ARMMAN Maternal and
Child Healthcare Mobile Health program. ARMMAN is a non-
governmental organization in India dedicated to reducing mater-
nal and neonatal mortality among underprivileged communities.
Through this program, you receive weekly preventive health infor-
mation via brief <automated voice messages> <phone calls>.
In this simulation, each time step represents one week.
Below is your background and history with the program.
Your Background:
• You enrolled in the program during the {enroll_gest_age}

week of your pregnancy.
• You are {age_category} years old.
• Your family’s monthly income is INR {income_bracket}.
• Your education level is {education_level}.
• You speak {language}.
• You own a {phone_owner} phone.
• You prefer receiving calls during {call_slot_preference}.
• You enrolled in the program through {channel_type}.
• You are currently in the {enroll_delivery_status} stage.
• You have been pregnant {g} times, with {p} successful births.
• You have had {s} stillbirth(s) and have {l} living child(ren).
Past Behavior: The following is a record of your previous listen-
ing behavior (each representing one week): {past_behavior}
Based on this information, as well as the context of the program
and on typical behavior of mothers in India, decide whether you
will be engaged with the next automated health message.
Key Consideration: Engagement at a previous week does not
necessarily imply engagement at the next, and lack of engage-
ment at a previous week does not necessarily imply future lack
of engagement. Engagement should depend on your specific cir-
cumstances that week (e.g. need for reassurance or information,
phone availability, schedule, etc.). Being unable to answer a call
that week implies a lack of engagement for that week.
Question:Will you be engagedwith the next <automated health
message><call from a health worker>?
Please respond with your final decision in the format: ‘##Yes##’
for engagement or ‘##No##’ for lack of engagement in this week.
Your response need only contain one of the following: ‘##Yes##’
OR ‘##No##’. No other text should be included.

Intervention. We select a sample with∼ 60% of mothers receiving
an intervention at some point during the 40-week period, reflect-
ing real program constraints. This corresponds to ∼ 10% of the
total population receiving a live call in each of the first six pro-
gram weeks. This weekly threshold reflects a feasible allocation in
resource-constrained programs, with an average of 0.015 live calls
per mother over the entire population and program duration. LLMs
simulating mothers who receive the intervention are prompted
with the intervention prompt (Box 1) for the corresponding week.
LLMs simulating mothers who do not receive the intervention are
provided with the no intervention prompt, which specifies an
automated telehealth message instead of a live call. At each time
step, the LLM generates a binary engagement prediction.

We analyze two subsamples from this group: (1) a larger sample
of 500 mothers, used to evaluate predictive performance of LLMs in
an intervention context, and (2) a smaller representative subsample
of 100 mothers, selected using K-means clustering to match the
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Category Available Characteristics

Enrollment Information gestational age at enrollment, delivery status
Reproductive History gravidity, parity, number of stillbirths, number of living children
Age Groups <20, 20–24, 25–29, 30–34, 35+
Language Hindi, Marathi, Kannada, Gujarati, English
Education Level Illiterate, 1–5 years, 6–9 years, 10th pass, 12th pass, graduate, postgraduate
Phone Ownership mother’s phone, husband’s phone, family phone
Preferred Call Time 8:30–10:30, 10:30–12:30, 12:30–15:30, 15:30–17:30, 17:30–19:30, 19:30–21:30
Enrollment Channel community enrollment, hospital enrollment, ARMMAN enrollment
Monthly Income (INR) 0–5000, 5001–10000, 10001–15000, 15001–20000, 20001–25000, 25001–30000

Table 1: Sociodemographic characteristics available for mothers in the program.

Providor Weight Model Generation Setup

Google Heavy Gemini 1.5 Pro model = gemini-1.5-pro-002, temperature = 1, max_tokens = 8192
Google Light Gemini 1.5 Flash model = gemini-1.5-flash-002, temperature = 1, max_tokens = 8192
OpenAI Heavy GPT-4o model = gpt-4o, temperature = 0.7, max_tokens = 2048
OpenAI Light GPT-4o mini model = gpt-4o-mini, temperature = 0.7, max_tokens = 2048
Anthropic Light Claude Instant 1.2 model = claude-instant-v1, temperature = 0.7, max_tokens = 2048

Table 2: Generating hyperparameters for various LLMs.

larger sample in terms of normalized feature values, mean engage-
ment, and linear engagement trends. The smaller subsample is used
to compare intervention effects across the three settings.

Counterfactual. Weuse the same representative subsample of 100
mothers as in the intervention group. In this scenario, all mothers
receive no intervention prompts containing engagement history
but omitting information regarding past interventions, allowing us
to assess predicted engagement in the absence of explicit actions.

Control. This group consists of 100 distinct mothers who never
received an intervention. All LLMs simulating these mothers re-
ceive no intervention prompts. However, in this case, action his-
tory is included and consists entirely of zero-action trajectories,
reinforcing the absence of live calls.

3.3 Prediction Ensembling
For each simulation setting, we run all models in Table 2, generating
𝑁 = 25 predictions per mother per time step. We compute mean
predictions and associated epistemic uncertainty at each time step.

Epistemic Uncertainty. Epistemic uncertainty [15, 17] captures
uncertainty in the model’s knowledge and is distinct from aleatoric
uncertainty, which arises from inherent randomness in data. Prop-
erly distinguishing between these sources of uncertainty allows us
to weight predictions based on model confidence. Using 𝑁 repeated
binary predictions and methods from [14], we quantify predictive
uncertainty for a given mother and time step as the binary entropy
𝐻 of mean predictions across queries.

Let 𝑝𝑖 be the individual predictions from a single model, and
𝑝 = 1

𝑁

∑𝑁
𝑖=1 𝑝𝑖 be their mean. Predictive uncertainty is then

𝐻 (𝑝) = −𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝).

Aleatoric uncertainty is the mean of individual prediction entropies

1
𝑁

𝑁∑︁
𝑖=1

𝐻 (𝑝𝑖 ) =
1
𝑁

𝑁∑︁
𝑖=1

[−𝑝𝑖 log(𝑝𝑖 ) − (1 − 𝑝𝑖 ) log(1 − 𝑝𝑖 )],

and epistemic uncertainty is then obtained as the difference

𝐻 (𝑝) − 1
𝑁

𝑁∑︁
𝑖=1

𝐻 (𝑝𝑖 ).

This provides a per-mother, per-time-step uncertainty estimate.

Ensembling. We evaluate three ensembling strategies:

(1) Direct averaging. We compute mean predictions across mod-
els, presenting this average as the ensemble’s final prediction proba-
bility (and binarizing where relevant). All models contribute equally
to the ensemble, regardless of uncertainty.

(2) Uncertainty-weighted aggregation. We employ a Bayesian
weighting mechanism using epistemic uncertainty to determine
each model’s contribution to the aggregated prediction. Lower
epistemic uncertainties 𝑢 𝑗 for model 𝑗 correspond to higher model
precisions 𝜏 𝑗 = 1

𝑢 𝑗
and greater influence in the aggregated result.

For each time step, the combined prediction is a weighted average

𝑝combined =

∑𝑀
𝑗=1 𝜏 𝑗𝑝 𝑗∑𝑀
𝑗=1 𝜏 𝑗

,

where 𝑝 𝑗 is the mean prediction from model 𝑗 , 𝜏 𝑗 is the correspond-
ing precision, and𝑀 is the number of models in the ensemble. This
ensures models with higher confidence exert greater influence on
the final prediction.

Since different models may estimate epistemic uncertainty on
different scales, we apply rank normalization across models before
aggregation. For each model 𝑗 with uncertainty estimate 𝑢 𝑗 , we
compute the normalized uncertainty

𝑢′𝑗 =
Rank(𝑢 𝑗 )

max(Rank(𝑢1, 𝑢2, . . . , 𝑢𝑀 )) ,

where Rank(𝑢 𝑗 ) assigns a rank to each uncertainty relative to un-
certainties of all𝑀 models. This preserves relative ordering while
ensuring values are normalized to the same scale, preventing any
single model’s uncertainty from dominating the ensemble.



(3) Lowest-uncertainty selection. As a baseline, we use rank-
normalized epistemic uncertainty values to select, for each mother
at each time step, the model’s prediction corresponding with the
lowest uncertainty 𝑝selected = 𝑝arg min𝑢 𝑗

.

3.4 Evaluation
Direct evaluation. For the larger group of 500 mothers, we simu-

late engagement trajectories over the full 40-week period for each
LLM. This larger sample allows for a comprehensive assessment
of model performance across diverse engagement trajectories. We
compute three ensemble prediction values and conduct direct eval-
uations of component and ensemble predictions over time using
accuracy, F1 score, and log-likelihood. Additionally, we perform a
bias analysis for all component models and ensembles by break-
ing accuracy down by sociodemographic group (participant age,
income, education level, and language).

Decision-focused Analysis. Once individual model and ensem-
ble performance have been established, we prompt the LLMs for
15 weeks on the 100-mother subsamples of the intervention, coun-
terfactual, and control groups. For each setting, we compute pre-
dicted engagement trajectories over time to determine whether
the intervention setting exhibits increased engagement relative to
no-intervention settings. Additionally, we analyze prediction tran-
sition probabilities over time to assess how LLMs model changes
in retention and new/re-engagement following interventions.

4 EXPERIMENTAL RESULTS & ANALYSIS
Throughout this section, we compare performance of individual
LLMs (Google’s Gemini 1.5 Flash and 1.5 Pro, OpenAI’s GPT-4o and
GPT-4o mini, and Anthropic’s Claude Instant) to the three ensemble
methods described in Section 3.3: direct averaging (black), epistemic
uncertainty-weighted aggregation (red), and lowest-uncertainty
selection (gray). Ensembles are plotted for all fivemodels, but curves
are separated by provider for readability.

4.1 Evaluation Metrics
Here, we evaluate predictions of the LLMs for 500 mothers in the
intervention setting over a 40-week period.

Accuracy. In Figure 1, we assess predictive accuracy of individual
models and ensembling methods over time, with models grouped
by provider. All models exhibit a decline in accuracy with time,
which is expected in an autoregressive prediction setting because
of error propagation from earlier predictions, making later weeks
increasingly difficult to predict.

Claude Instant (bottom) consistently underperforms relative to
other models, with accuracy exceeding 0.8 in only four weeks. By
contrast, Gemini Flash and GPT-4o emerge as the strongest in-
dividual models in terms of accuracy. Gemini Flash consistently
outperforms Gemini Pro, despite the latter being a more power-
ful model in general-purpose settings [7]. GPT-4o mini achieves
strong early performance (∼ 0.85 accuracy) but experiences greater
fluctuation and a decline after ∼ 30 weeks.

Notably, uncertainty-weighted aggregation (red) and direct aver-
aging (black) mitigate this decline, indicating that ensemble meth-
ods help stabilize predictions when component model performance

Figure 1: Mean accuracy of component and ensemble models
over time, grouped by provider.

deteriorates. Meanwhile, GPT-4o exhibits a different trend, with
initially lower accuracy that improves over time, surpassing GPT-4o
mini after ∼ 30 weeks. Ensemble methods effectively track these
model performance shifts, dynamically adjusting to follow the best-
performing model at each stage. Overall, ensemble methods provide
robustness across models, improving predictions relative to weaker
models such as Claude Instant and Gemini Pro, without sacrificing
accuracy from stronger models.

4.1.1 F1 score. We plot F1 score (Figure 2) for all models over time
for a more balanced evaluation to ensure models are not simply op-
timizing for the majority class. In this group, the total engagement
proportion is 0.59, suggesting a possible class imbalance.

F1 scores demonstrate similar trends to accuracies. Unlike in
accuracy results, Gemini Pro achieves slightly higher F1 scores than
Gemini Flash. This suggests that Gemini Pro may have better recall,
identifying more engagement cases, even at the cost of slightly
reduced precision. GPT-4o and GPT-4o mini exhibit similar F1 score
trends, while Claude Instant continues to demonstrate significantly
lower performance compared to other models.

Most notably, no individual component model consistently out-
performs either of the aggregation methods, reinforcing their effec-
tiveness. By integrating predictions from different models, ensem-
bling likely balances the precision-recall trade-off more effectively
than any single model. Across all groups, uncertainty-weighted
aggregation (red) and direct averaging (black) perform strongly,
generally outperforming all individual models. In contrast, lowest-
uncertainty selection (gray) underperforms slightly in the long
term, reinforcing that selecting the single most confident predic-
tion does not necessarily yield the best balance between precision
and recall. The lower F1 scores for lowest-uncertainty selection
suggest that high-confidence predictions might be biased toward
precision, leading to reduced recall and classifier effectiveness.



Figure 2: Mean F1 score of component and ensemble models
over time, grouped by provider.

4.1.2 Log-likelihood. Figure 3 plots model log-likelihood over time,
providing insight into model confidence and calibration. Unlike ac-
curacy and F1 score, which assess binary correctness, log-likelihood
captures both correctness and model confidence in predictions.
Higher log-likelihoods indicate correct classifications and well-
calibrated probability estimates, making it important for evaluating
model reliability in uncertainty-aware settings such as ours.

Figure 3: Mean log-likelihood of component and ensemble
models over time, grouped by provider.

As with other metrics, log-likelihood exhibits an initial increase
across all models during early calibration, followed by stabiliza-
tion and a slight decline over time. Aggregation methods demon-
strate highest log-likelihood values, indicating better alignment
with true probabilities than component models and suggesting that
aggregation mitigates overconfidence, leading to better-calibrated
probability estimates and improved reliability.

Among individual models, Gemini Pro achieves significantly
higher log-likelihood than Gemini Flash, despite having lower accu-
racy. A similar trend is observed with GPT-4o mini, which outper-
forms GPT-4o in log-likelihood despite lower raw accuracy. This
suggests Gemini Pro and GPT-4o mini are better calibrated than
their more accurate counterparts. While Gemini Flash and GPT-4o
may achieve higher accuracy bymakingmore confident predictions,
their probability estimates may be less well-calibrated, leading to
lower log-likelihood scores.

Among ensemble approaches, direct averaging (black) slightly
outperforms uncertainty-weighted aggregation (red) in log-
likelihood, both stabilizing around -0.75 in the long term. This
suggests that weighting predictions by uncertainty may amplify
miscalibrated models—an overconfident but systematically biased
model may contribute higher precision weightings and lead to
lower overall log-likelihood. Lowest-uncertainty selection (gray)
performs particularly badly, indicating poor model calibration and
an unreliable ensembling strategy—this method likely systemati-
cally selects overconfident predictions, even when incorrect.

4.1.3 Bias Analysis. We assess model fairness by evaluating accu-
racy across sociodemographic groups. Figure 4 plots accuracy for
all component models and ensembles across income, age, education,
and language groups. Bias is quantified as the maximum observed
accuracy difference across feature categories for each model.

Figure 4: Average total accuracy by sociodemographic feature
for individual and ensemble models.

Accuracy remains consistent across feature groups, demonstrat-
ing minimal model bias. There is a slight trend toward higher ac-
curacy for higher income brackets, 10-pass and 12-pass education



categories, and English-speaking mothers, but no group exhibits
significantly stronger performance than others, implying no strong
systematic bias. Across sociodemographic groups, individual mod-
els exhibit similar accuracy distributions, with slight variations.
Ensemble methods generally outperform individual models or at
least match best performances, providing robust predictions across
feature categories. The improved robustness of ensemble meth-
ods suggests aggregating predictions across models helps mitigate
individual model biases and improve generalization.

4.2 Decision-focused Analysis
In this section, we focus on the two aggregation methods as they
have demonstrated superior performance in accuracy, F1 score,
and log-likelihood. Because of the poor performance of the lowest-
uncertainty selection method, we exclude it from further analysis.

We analyze engagement predictions across the three settings
using a cohort of 100 mothers over a 15-week period. We restrict
analysis to this shorter time horizon, as engagement predictions
become increasingly unstable beyond this point and accuracy tends
to decline over time.

Total Engagement. Figure 5 presents the mean engagement pro-
portion over time for each setting. Note the counterfactual setting
(middle) does not include a ground truth curve, as no direct obser-
vations exist for this scenario.

Figure 5: Mean engagement proportion over time in (left to
right) the intervention, counterfactual and control settings.

Across settings, both aggregation methods (as well as individ-
ual component models, omitted for clarity) initially overpredict
engagement with relatively low variance. Engagement declines
over time in all cases, with uncertainty-weighted aggregation (red)
consistently predicting slightly higher engagement than direct av-
eraging (black). Both methods overestimate engagement relative
to ground truth in intervention and control settings, particularly
in the latter, suggesting systematic optimism in predictions. De-
spite initial bias, predictions gradually begin to align better with
the observed engagement trend. In the intervention setting, this
alignment occurs around the third week, while in the control set-
ting, predictions this is closer to the sixth. Engagement predictions
remain slightly elevated throughout the study period, indicating
persistent overestimation of the ensemble methods.

Among the three settings, the intervention case exhibits the
largest prediction variances, indicating greater uncertainty in en-
gagement trajectories. The counterfactual engagement closely mir-
rors the intervention case. To quantify predicted effects of live call

interventions, we compute differences in mean engagement be-
tween the intervention setting and the two no-intervention settings
(Figure 6).

Figure 6: Difference in mean engagement over time between
intervention and counterfactual settings (left), and interven-
tion and control settings (right).

The difference between the intervention and counterfactual set-
tings (left) is initially negative for both aggregation methods but
increases over time. This suggests engagement in the intervention
group does not immediately exceed counterfactual expectations,
possibly due to model uncertainty in early predictions or a delay
in the effect of live calls. However, in later weeks, engagement in
the intervention setting surpasses the counterfactual trajectory,
suggesting a growing intervention effect.

In contrast, the difference between intervention and control set-
tings (right) follows more complex trajectories. Ground truth differ-
ences (purple) suggest an overall positive effect of live service call
interventions, though engagement fluctuates over time. The high
variability in the ground truth may reflect real-world fluctuations
in engagement patterns, such as seasonal effects, external influ-
ences on participation, or heterogeneity in how different mothers
respond to live calls. Model predictions do not fully capture this
trend. While direct averaging (black) aligns more closely with the
true improvement in engagement, uncertainty-weighted aggrega-
tion (red) tends to predict smaller differences. This likely arises
because uncertainty-weighted aggregation overestimates engage-
ment in the control setting (Figure 5), leading to an underestimation
of relative intervention benefit. This may be due to the weighting
mechanism amplifying predictions from models that are overconfi-
dent yet miscalibrated in control settings.

Transitions. For a more fine-grained analysis of the interven-
tion’s effects on engagement, we examine transition probabilities
between ‘engaged’ and ‘not engaged’ states over time (Figure 7)
to distinguish between retention (sustained engagement) and re-
engagement (recovering previously disengaged users).

The counterfactual and control settings exhibit similar transi-
tion trends, suggesting that, in the absence of direct intervention,
predicted engagement behavior follows a comparable trajectory
across these settings, as expected. The similarity between control
and counterfactual settings confirms that engagement trends with-
out intervention are largely stable, validating that counterfactual
predictions approximate a no-intervention scenario.

Across settings, aggregation method predictions tend to over-
estimate both engagement transitions (0 → 1) and retention (1 →



Figure 7: Transition probabilities over time for engagement
states across intervention, counterfactual, and control set-
tings. Top Row: Transitions from not engaged (0) to engaged
(1). Bottom Row: Probability of remaining engaged (1→ 1).

1) relative to ground truth. However, in the control setting, models
underestimate retention (1 → 1). In the intervention setting, the
probability of transitioning from not engaged (0) to engaged (1) is
lowest long-term among the three settings. While the intervention
initially boosts engagement, its predicted effect on re-engagement
diminishes over time. This suggests that live calls primarily help sus-
tain engagement rather than recover disengaged users. Conversely,
retention probabilities (1→ 1) are highest in the intervention set-
ting, indicating that once engaged, users are more likely to stay
engaged with live call interventions in early weeks. Considering
both predictions and ground truth trends, service calls as an inter-
vention appear to be more effective at sustaining engagement (1
→ 1) than at driving new or re-engagement (0→ 1).

5 DISCUSSION AND CONCLUSIONS
Our findings suggest that LLMs can serve as effective predictive
tools for engagement modeling in maternal health programs, par-
ticularly when combined through ensemble aggregation methods.
However, our analysis also highlights key challenges, particularly
regarding overconfidence in LLM predictions, which has been em-
pirically observed in other settings [33].

While Gemini Flash performed well as an individual model in
terms of accuracy and F1 score, aggregation methods demonstrated
their strength in handling variability and uncertainty. These meth-
ods contribute to improved stability and generalization, especially
in scenarios where individual models show greater fluctuations
or overconfidence. F1 score of aggregated models is never outper-
formed by any component model, reinforcing benefits of ensemble
methods in balancing precision and recall. Model aggregation has
the greatest impact on log-likelihood, with direct averaging achiev-
ing slightly better log-likelihood values than uncertainty-weighted
aggregation. This highlights the robustness of aggregation over
any single model’s prediction, improving probability calibration.
Ensemble aggregation improves predictive robustness, particularly
in settings with data sparsity, by leveraging model diversity.

Counterfactual predictions provide a valuable tool for interven-
tion analysis, allowing us to simulate and compare engagement
trends across settings. Findings indicate that interventions primar-
ily sustain engagement (1→ 1) rather than drive re-engagement (0

→ 1). Our results suggest LLMs can be a useful decision-support
tool, but they require calibration and aggregation to mitigate over-
confidence and ensure reliability. Specifically, direct application of
individual LLM predictions may lead to biased intervention plan-
ning because of overconfident engagement forecasts.

Uncertainty-aware approaches should be further refined to im-
prove decision-making in resource-limited settings, particularly by
calibrating models to better distinguish between high-confidence
and uncertain predictions.

5.1 Future Work
Main avenues for future work include: (1) Improving counterfactual
modeling by investigating whether models with or without explicit
knowledge of the intervention produce more reliable counterfactual
predictions. (2) Exploring additional adaptive weighting schemes
for ensemble methods, where model contributions change dynam-
ically based on confidence and past performance. (3) Calibrating
uncertainty estimates to ensure models more accurately reflect
variability in engagement behavior. (4) Extending models to simu-
late program expansion over time, accounting for new participants
entering the intervention, to provide a more realistic setting.

Our work demonstrates that LLMs, when properly aggregated,
can provide meaningful engagement predictions to guide maternal
health interventions. However, challenges related to uncertainty
estimation, model calibration, and counterfactual prediction reli-
ability remain key areas for future research. By addressing these
limitations, LLM-driven approaches could play a significant role in
scalable, data-efficient decision-making for social good programs.

Consent and Data Usage
Consent for participating in ARMMAN’s mMitra program is re-
ceived from all beneficiaries. All data collected through the program
is owned by ARMMAN and only they are allowed to share data. This
dataset will never be used by Google for any commercial purposes.
All data used for this project was entirely anonymized before being
parsed to any language model; no personally identifiable informa-
tion is used. Data exchange and use was regulated through clearly
defined exchange protocols including anonymization, read-access
only to researchers, restricted use of the data for research purposes
only, and approval by an ethics review committee registered with
the Indian Council of Medical Research.
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