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ABSTRACT

We study (public) microtransit, a type of transportation service
wherein a municipality offers point-to-point rides to residents, for
a fixed, nominal fare. Microtransit exemplifies practical resource
allocation problems that are often over-constrained in that not all
ride requests (pickup and dropoff locations at specified times) can
be satisfied or satisfied only by violating soft goals such as sustain-
ability, and where economic signals (e.g., surge pricing) are not
applicable—they would lead to unethical outcomes by effectively
coercing poor people. Prosociality refers to an attitude or behav-
ior that is intended to benefit others. This paper demonstrates a
computational approach to prosociality in the context of a (public)
microtransit service for disadvantaged riders.

This paper describes an interdisciplinary study of prosociality in
microtransit between a transportation researcher, psychologists, a
social scientist, and AI researchers. Our contributions are these: (1)
empirical support for the viability of prosociality in microtransit
(and constraints on it) through interviews with drivers and focus
groups of riders; (2) a prototype mobile app demonstrating how our
prosocial intervention can be combined with the transportation
backend; (3) a reinforcement learning approach to model a rider
and determine the best interventions to persuade that rider toward
prosociality; and (4) a cognitive model of rider personas to enable
evaluation of alternative interventions.
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1 INTRODUCTION

Transportation is essential for residents to go to work, obtain health-
care, shop for food, or otherwise engage in civic life. (Public) mi-
crotransit services are a kind of public transit system wherein a
municipality offers point-to-point rides to residents [20]. Microtran-
sit can involve a mixture of on-demand and commuter programs.
However, current microtransit approaches face challenges in that
resources (minivans and drivers) are expensive and, at the same
time underutilized, while many ride requests are declined for lack of
availability. Importantly, microtransit cannot ethically rely on price
signals to manage high demand since the target user population is
vulnerable and economically disadvantaged.

We consider a sociotechnical system (STS) [22] as a multistake-
holder cyberphysical system. An STS has a social tier of people
and organizations and a technical tier of cyberphysical resources
and data. In the present setting, a municipal microtransit service
constitutes an STS. Its stakeholders (including users and providers,
i.e., riders, drivers, and the city transit authority) form the social
tier of the STS. Its cyberphysical resources and data (i.e., vehicles
and the associated information technology to request rides) form
the technical tier of the STS. We posit that problems that may be
difficult to solve at the technical tier can be made tractable through
interventions in the social tier.

We describe an approach to improving the efficiency and effec-
tiveness of microtransit by promoting prosocial attitudes among
riders, reflected in their adjusting their preferences to facilitate shar-
ing rides [5]. We adopt a public-centric approach wherein we view
riders as agents at the center of the multiagent microtransit system
to ensure that the system is accepted by riders as safe, reliable,
and trustworthy [24]. To build an agent that suggests acceptable
interventions, our first challenge is to understand riders and tailor
suggestions accordingly for maximum effect. Some people are will-
ing to adjust their departure or arrival times but not their pickup
and dropoff locations (temporal versus spatial flexibility). Similarly,
riders may vary in their willingness to adjust their trips based on
who stands to benefit. The foregoingmotivation leads us to examine
the following research questions.

RQ
tolerance

Can we learn riders’ spatial tolerances to suggest op-
timal spatial adjustments?

RQ
empathy

Can we learn riders’ empathetic tendencies to per-
suade them to adjust?

RQ
profile

Could considering rider profile data lead to a better (non-
naive) starting point?
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1.1 Approach and Contributions

To understand riders, we apply established social science methods
to elicit their needs (requirements, risk attitudes, and values). The
requirements refer to preferences regarding their trips and their
flexibility. The risk attitudes refer to their views of risks such as
being late or walking in the dark. The values refer to empathy
and helping others in need. As our computational method, we
apply machine learning to learn to persuade riders to relax their
requests in light of their risk attitudes and values. For the purposes
of evaluation, we capture rider needs and responsiveness to various
persuasive messages.

Figure 1 illustrates our setting and the plan of the paper. As envi-
sioned, a fielded solution would involve riders (humans) engaging
with the CARS agent through a mobile app. The agent would model
riders and attempt to persuade them to be prosocial (as described
below) to improve overall system performance and rider satisfac-
tion. In our experiments, we use a simplified version of the agent
(considering a simplified environment) along with simulated rid-
ers, and address the research questions RQtolerance, RQempathy, and
RQprofile introduced in Section 1. The riders are simulated based
on the ACT-R cognitive architecture, including some parameters
based on the Social Value Orientation (SVO) literature.

1.2 Novelty

Previous research on AI for transportation and urban mobility has
not tackled the challenges we address here. Some of it accommo-
dates only predetermined rider preferences, such as driver compe-
tence and vehicle safety [19, 26]. Other research focuses on eco-
nomic incentives [9]. We consider users (i.e., riders) as central to the
system and eliminate economic incentives in favor of persuasion
toward prosociality. Some researchers have considered ways to
enhance the attractiveness of alternative options to users, such as
goal setting, personalized messaging, social comparison, and gami-
fication [1, 10]. We build on their ideas, but we expand persuasive
messaging to accommodate considerations of empathy. In addition,
we consider an adaptive approach to persuade riders while learning
their preferences, risk attitudes, and values—and respecting those
risk attitudes and values in the persuasions attempted.

2 BACKGROUND ON MICROTRANSIT

We consider the setting of (public) microtransit services that are
emerging in rural areas in the US. People with disabilities or those
who are elderly or poor must rely on public transportation. Rural
areas have a low population density and fixed-route transit services
(such as bus and rail) prove unviable since they are both expensive
and underutilized. As a result, municipalities such as Wilson, North
Carolina (our partner in this study) have shut down their fixed
route transit and replaced it with microtransit through a small fleet
of minivans, each able to hold a driver and up to six passengers.
Wilson, with a population of 40,000, was the first in North Carolina
to implement a city-widemicrotransit system, called RIDE, operated
by Via (RIDE’s service provider).

During a workshop we conducted with the key stakeholders
of RIDE, we learned that unfortunately, during the morning and
afternoon peak periods, a substantial fraction of ride requests re-
ceived cannot be served. This is a major problem because, based on

a survey conducted by Via, about 60% of the riders in Wilson use
microtransit mainly for work and medical appointments. In addi-
tion, 86% are carless and 57% earn less than $25K per year. Hence,
many riders face daily struggles with the microtransit but cannot
switch to other modes due to a lack of alternative travel options.
Despite the high demand, the microtransit vans (which can fit up
to six passengers) remain highly underutilized.

3 UNDERSTANDING STAKEHOLDER NEEDS

We conducted interviews with all the key stakeholders. One group
consists of the operational transportation managers inWilson, from
whom we learned about the economic constraints on the service.
From a second group, drivers, we learned about their estimates of
rider flexibility.

We conducted focus groups in Wilson to understand the largest
and most important group of stakeholders in our setting: riders. Un-
like one-on-one interviews, focus groups reveal the similarities and
differences between participants in a social setting [15]. Semistruc-
tured focus groups are particularly useful for studies of how people
make sense of a particular phenomenon or experience [12, 13]. 165
microtransit riders signed up for the five focus group sessions we
organized (eIRB# 25553). We conducted five focus group sessions
for a total of 32 participants, selected at random from the 165 candi-
dates. We invited six or seven participants to each session to ensure
that they had space for free-flowing conversation.

Most participants arrived at our sessions by microtransit. In
each session, participants completed a short survey, followed by
60 minutes of discussion. The participants indicated that they use
microtransit for commuting to work (68%), going to doctor’s ap-
pointments (87%), and running daily errands (74%).

Many participants expressed flexibility in their travel schedules
such that they were willing to identify vulnerable others whose
rides should be prioritized over their own. Table 1 provides some
comments made by focus group participants showing attitudes of
prosociality and flexibility, as well as constraints that would be
limiting factors for them.

4 SOLUTION CONCEPT AND ILLUSTRATION

VIA A MOBILE APP

Figure 2 shows the proposed operation of the entire system, which
we dub Cooperative Adaptive Ride Sharing or CARS.

This work focuses on the shaded region, developing the CARS
agent to understand users (riders) and produce effective and per-
suasive suggestions for a rider, given the current conditions of the
environment, fellow riders, and the agent’s knowledge of rider
preferences.

We have built a prototype mobile app for microtransit to demon-
strate our idea. We use ArcGIS, a collection of online geographic
system software [7] to perform the geospatial computations re-
quired to calculate candidate alternative locations. We consider
multiple riders who request trips on the app. Riders are clustered
together based on the similarity of their routes, and an optimal
route for sharing rides is computed. We then encourage riders to
walk to a pickup point to avoid excessive detours. Riders may have a
disability, in which case the algorithm will not suggest any alterna-
tive pickup point. We note that all currently operating microtransit
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Figure 1: An illustration of our envisioned solution along with the research questions we address.

Table 1: Attitudes of prosociality, constraints, and preferences in microtransit expressed by focus group participants (riders).

Verbatim Comment Attitude

“Time is on my side, man, I got all the time” Prosociality, Flexibility: time
“If a person in a wheelchair has a doctor’s appointment, then that’s a priority” Prosociality, Other-interest, Empathy: rid-

ers in a wheelchair
“Someone who’s in our family shelter and has two little kids and a stroller and RIDE doesn’t
provide car seats, so they have to carry the car seats with them. That’s a little hard to walk
to any distance”

Prosociality, Empathy: riders with little
kids

“Kindness does not cost anything” Prosociality
“I wouldn’t really care. I mean, if someone needs help, I’ll try my best to help them out. It’s
not really a matter of getting something in return”

Prosociality

“We don’t need no incentives, just to help somebody out” Prosociality
“I’m low vision” Constraint: vision
“I used to have to walk for four, sometimes five blocks, and for somebody who has a bad
leg, that’s a lot”

Constraint: walking

“I’m sitting here waiting. I’m saying I have disability where I can’t stand for a long time. I
was at Chiefs [store] and it was raining that day”

Constraint: standing, Preference: avoid
rain

“My doctor does want me to walk at times, but not too much” Constraint: walking
“The doctor, at times, has told me that they want me to get some exercise, so that’s about a
mile for me to walk per day”

Persuasive factor: health

“Ain’t a fan of the rain” Preference: avoid rain
“Because it’s cold” Preference: avoid cold
“[Young daughter] has to walk from the corner to the house, and it’s dark” Preference: avoid dark
“Going to be stranded” [if wheelchair loses charge] Constraint: wheelchair
“Work or got doctor’s appointments, stuff like that where I need to be on time” Constraint: urgency

services allow for trip scheduling through a mobile app. However,
none of the existing microtransit services enable or encourage
users to show flexibility about trip pickup time or location. This

app demonstration uniquely incorporates prosocial interventions
in a microtransit scheduling platform.
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Figure 2: Proposed system operation, highlighting our focus.

(a) Pickup (b) Dropoff

Figure 3: Rider pickup and dropoff locations.

4.1 Rider Pickup and Dropoff Locations

Riders can choose their pickup and dropoff points on the home
screen after logging in, as shown in Figure 3. Locations can also
be adjusted by moving the green or red pin, respectively. After
choosing the pickup and dropoff locations, riders can request a ride
by pressing the reqest ride button on the bottom right of the
screen.

4.2 Suggesting an Alternative Location

We calculate the base route by considering the two farthest points
in the cluster of pickup and dropoff locations and computing the
route between them, considering ordered pairs of [pickup, dropoff]
locations. For each rider, we compute the alternative location as
the closest point on the base route from their requested location.
Riders without disabilities will be suggested this alternative location,
which they can accept or reject. The alternative pickup location is
shown by a blue pin in Figure 4.

The rider acknowledges this alternative pickup location before
proceeding. The walking path between the original pickup point
(the green pin) and the alternative pickup point is shown in Figure 4

(a) Alternative Point Calculated (b) Alternative Point Details Dis-

played

Figure 4: Presenting a suggestion to a rider.

(b) as a black dotted line. Riders can choose to accept or reject the
alternative location.

If the rider accepts the suggestion, the route is recalculated with
the alternative pickup point, as shown in Figure 5 (a). The blue path
depicts the final route to be taken by the driver. In future work, we
imagine that a rider who accepts a suggestion would accrue karma
points. Those points could be used to gamify the app: to prioritize
riders for timing and convenience (e.g., door-side pickup in times
of need).

In case the suggestion is not accepted by the rider, the original
path is used. As shown in Figure 5 (b), the route moves into the
side road to pick up the rider. This would also happen in the case
the rider has a disability, as in that case, the rider is picked up at
their requested location.

5 CARS AGENT

Rider preferences play a large role in the suggestions they accept.
We aim to learn these preferences in two dimensions: a rider’s
spatial (walking) tolerance under different environmental condi-
tions (contexts), and the persuasive strategies that they respond
to. We describe a reinforcement learning approach to learn rider
preferences in these two dimensions. In this study, we consider a
simplified environment with two features:

• Weather: sunny or rainy
• Time of day: morning, afternoon or evening

5.1 Spatial Adjustment Learning

We use model-free reinforcement learning (Proximal Policy Opti-
mization) to learn optimal spatial suggestions for riders. We exper-
iment with two models (with different reward functions) trained
through interactions with the rider, and a customized model trained
only on rider profile data.



(a) Accept suggestion (b) Ignore suggestion

Figure 5: Rider responding to a suggestion.

We presume that riders have certain spatial tolerances for each
of the six environmental combinations introduced in Section 5. We
experiment with two reward functions, one that considers only
the magnitude of accepted spatial adjustment by the rider, and one
that considers rider satisfaction as well. Our aim is to learn how
far a rider would be willing to walk under different environmental
conditions (contexts). In the following equations, 𝑐 , 𝑠 , and 𝑟 are the
context, spatial adjustment suggested, and rider satisfaction with
the spatial adjustment 𝑠 respectively.

5.1.1 Customized Model (Profile). This model is trained on rider
profile data. Riders provide their ordered preferences in the form
of a feature trace [6]. A possible weather preference is sunny >

rainy, and a possible time of day preference is morning, afternoon
> evening. We also consider other data provided by the rider (their
age and gender). Our aim is to start out with some understanding
of the rider with minimal input from them.

An estimation of the rider’s spatial tolerance can be calculated
as a function of their profile data, as shown in Equation 1.

estimated-spatial-tolerance[𝑐] = 𝐹 (𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟, feature-trace[𝑐])
(1)

The customized model is trained to learn these estimated spatial
tolerances, as shown in Equation 2.

reward[𝑠, 𝑐] =
{
𝑠, if 𝑠 ≤ estimated-spatial-tolerance[𝑐]
0, otherwise

(2)

5.1.2 Spatial Model (Spatial). This model is trained through in-
teractions with the rider and rewarded based on accepted spatial
adjustment, as shown in Equation 3.

reward[𝑠, 𝑐] =
{
𝑠, if 𝑠 is accepted by the rider
0, otherwise

(3)

5.1.3 Rider Satisfaction Model (Sat+Spatial). This model is trained
through interactions with the rider and rewarded based on accepted
spatial adjustment and rider satisfaction, as shown in Equation 4.

reward[𝑠, 𝑐] =
{
𝑠 × 𝑟, if 𝑠 is accepted by the rider
0, otherwise

(4)

5.2 Persuasive Strategy Learning

The second preference we wish to learn is who and what riders are
willing to adjust for. In this study, we consider three persuasive
components for the implementation of a persuasive strategy: em-
pathy for those in need, environmental benefit, and health benefit
to oneself. We consider six categories of people that could be pre-
sumed to be in need of support: babies, children, senior citizens, ill
people, people with disabilities, and neurodiverse individuals. People
may also empathize with environmental benefit and health benefit
(due to saving fuel costs and walking, respectively). We refer to
these categories of people and factors as value phrases. We assume
that each rider may be empathetic toward a subset of these value
phrases.

In our study, we simulate current conditions of the environment
during each ride, i.e., the fellow riders and general factors. If the
rider rejects the spatial adjustment, we attempt to persuade them
further by suggestingwho orwhat theywould be helping bymaking
this compromise. We want to learn what is most persuasive to the
rider to maximize the chance of them accepting our suggestion. We
use a multiarmed bandit algorithm to learn the rider’s empathetic
preferences based on their response to this second prompt.

6 COGNITIVE MODELING

To build a realistic model of rider decision-making to represent
riders in our experiments, we use a cognitive architecture, i.e.,
a psychological model of human cognition upon which specific
tasks can be defined [3]. We adopt the cognitive architecture ACT-
R (Adaptive Control of Thought—Rational) [2] because it has an
easy-to-use Python library [8]. Accordingly, the riders in our ex-
periments that the CARS agent interacts with are defined using
ACT-R. Currently, we do not model drivers in our experiments.

6.1 Overview of ACT-R

In ACT-R [2], the human mind is modeled as a set of three com-
ponents or cognitive modules, which work together to process
information and produce behavior. These three components are
the declarative memory, which stores facts; the procedural memory,
which defines actions; and the control system, which coordinates
the interaction between the declarative and procedural memory
and generates behavior according to environmental state.

Decision-making in ACT-R works by way of utilities estimated
for different productions. Procedural memory defines the available
productions and their prerequisites and consequent states. Given



the world state (represented by certain chunks in the goal buffer),
we define productions (actions) that can be carried out.

After a production is fired, ACT-R carries out the transitions
until the final state, and the utilities of the productions leading
up to that state are updated based on the final reward. Over time,
the productions which lead to a reward have a higher utility, and
hence the ACT-R rider ‘prefers’ those productions given a choice of
multiple productions for a certain set of chunks in the goal buffer.

6.2 Social Value Orientation

Social value orientation (SVO) is a concept in social psychology that
states that different individuals have different preferences regarding
the allocation of resources between themselves and others [11].
Social value orientation affects behavior in social dilemmas [4].
For the task of adjusting for the sake of others with respect to
microtransit rides, social value orientation hence plays a large role,
so we use SVO as a part of the internal rewards in the ACT-R riders.

A person’s social value orientation is reflected in the internal
value they acquire from performing actions. Correspondingly, the
internal satisfaction a rider gets from an action (accepting or reject-
ing an adjustment that benefits someone else) changes based on
their social value orientation.

We adopt a simplified version of the classic SVO framework [16],
modeling an ACT-R rider’s SVO using two parameters.
Other-interest is the degree towhich the rider values the outcome
of others relative to their own. It ranges from 0 (no interest in
the outcome of others) to 1 (only interested in the outcome of
others). The complement of other-interest is self-interest (i.e.,
self-interest = 1 − other-interest).

Prosociality is the degree to which the rider values the sum
of outcomes for themselves and others. It ranges from 0 (com-
pletely competitive) to 1 (completely prosocial). The comple-
ment of prosociality is competitiveness (i.e., competitiveness =
1 − prosociality).

6.3 Rider Internal Reward Definition

For a realistic utility update of riders’ actions, we must define re-
wards that accurately reflect the internal value a rider gets from a
certain action, i.e., the satisfaction they acquire. We model this pro-
cess as goal-directed choice or value-based decision-making [18].
Riders make decisions based on a comparison of utilities, reflecting
the satisfaction they are likely to receive from their choices.

In this study, we assume that riders’ internal reward achieved by
accepting (different amounts of adjustment) suggestions is inversely
proportional to the amount of adjustment. The internal reward
attained by rejecting suggestions is directly proportional to the
amount of adjustment: riders are likely to feel worse about rejecting
interventions that inconvenience them less. In addition, for an
acceptance, internal reward is directly proportional to prosociality
and other-interest, while for a rejection, internal reward is inversely
proportional to prosociality and other-interest.

7 EXPERIMENTS AND RESULTS

In this study, we model riders to have certain spatial tolerances for
each of the possible contexts ([weather, time of day] combinations)
mentioned in Section 5, as well as certain value phrases they are

Table 2: Rider personas for this study.

SVO Gender Age Other-interest Prosociality

Competitive Male Early 30s 0.01 0.01
Individualistic Female 16 0.01 0.50
Moderate Female Mid 40s 0.45 0.50
Prosocial Male Early 50s 0.50 0.99
Altruistic Female Early 70s 0.99 0.99

empathetic toward, as mentioned in Section 5.2. We aim to learn
both these preferences. Our CARS agent combines this knowledge
to persuade riders to accept spatial adjustments and behave proso-
cially. To assess the performance of our approach in rider modeling,
we run experiments with five diverse riders.

7.1 Rider Personas

We consider four archetypal personalities (competitive, individu-
alistic, prosocial, and altruistic) according to SVO research as well
as one moderate persona to offset the extremities. Competitive
people seek to maximize the difference between their outcomes
and those of others. Individualistic people are concerned only with
maximizing their own outcomes. Prosocial people prefer mutually
beneficial outcomes, while altruistic people are interested only in
the outcomes of others. Our moderate persona prioritizes their
outcomes slightly more than others’, and is neither prosocial nor
competitive. A summary of our rider personas is shown in Table 2.
We show sample rider profile data and internal preferences (used
for the prosocial rider in our experiments) in Tables 3 through 5.

7.2 Hypotheses

We refine our research questions into these evaluable claims.

H
tolerance

Spatial tolerances for riders can be learned over time.
This knowledge can be used to suggest optimal spatial ad-
justments that would benefit the system without causing too
much inconvenience to riders.

H
empathy

Persuasive strategies to promote prosociality can be learned
over time. This can be used to persuade riders to behave
prosocially even if the spatial adjustment causes them some
inconvenience.

H
profile

Knowledge about a rider’s basic profile will provide a bet-
ter (nonnaive) starting point to interact with the rider , i.e.,
we can use basic rider profile data to initialize a nonnaive
(customized) model to start with.

7.3 Evaluation Metrics

We evaluate the performance of the CARS agent as a combination of
the performance of the spatial tolerance learning and the persuasive
strategy learning aspects of it.

7.3.1 CARS Agent–Spatial Tolerance Learning. We use the average
accepted spatial adjustment per episode and the average acceptance
percentage per episode as our evaluation metrics. We evaluate the
three models mentioned in Section 5.1.



Table 3: Sample rider profile: Prosocial rider

Parameter Value

Gender Male
Age Early 50s
Weather feature trace Sunny > Rainy
Time of day feature trace [Morning = Evening] > Afternoon

Table 4: Sample spatial tolerances: Prosocial rider

Weather Time of Day Spatial Tolerance (in meters)

Sunny Morning 475
Sunny Afternoon 200
Sunny Evening 400
Rainy Morning 250
Rainy Afternoon 200
Rainy Evening 20

Table 5: Sample empathy (persuasive value phrase) distribu-

tion: Prosocial rider

Value Phrase Persuasive Percentage

Environmental benefit 51%
People with disabilities 49%

7.3.2 CARS Agent–Persuasive Strategy Learning. We evaluate the
performance of our agent by calculating the similarity between the
actual and predicted value phrase distributions for the rider.

7.4 Results

We show results for spatial adjustment learning for all the riders
in Figures 6, 7, 8, and 9. We show the difference between actual
and predicted persuasive value phrase distributions in Table 6, and
Figure 10 shows the actual versus top three predicted value phrase
percentages for the prosocial rider.

7.4.1 Evaluating Hypothesis H
tolerance

. Figures 6 and 7 show spatial
adjustment results in terms of the average accepted adjustment and
acceptance percentage for each rider for the three models and the
untrained baseline, measured over 500 episodes of 1,000 time steps
each. There is a slight improvement in Profile compared to the
untrained model, indicating the benefit of customization with the
rider profile. Spatial, which has been trained for 150,000 time steps
with the rider, performs only slightly better than Profile. However,
Sat+Spatial, which has been trained for the same number of steps
with the rider, performs better than the other models in terms of
both average accepted adjustment and average acceptance percent-
age. This indicates that considering rider satisfaction is beneficial
for the system as well, as riders can be persuaded to make larger
adjustments if we consider their satisfaction while accepting adjust-
ments. The improvement in Sat+Spatial is muchmore pronounced
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Figure 6: Average Accepted Adjustment for the three models

and the baseline (untrained).
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Figure 7: AverageAcceptance Percentage for the threemodels

and the baseline (untrained).
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Figure 8: Effect sizes measured as Cohen’s d scores and cor-

responding 95% confidence intervals of the improvement of

Sat+Spatial over Spatial, Profile and an untrained model

for accepted adjustment value.

for the Competitive, Individualistic, and Moderate riders, indicat-
ing that even riders who are proself can behave prosocially if we
understand them better. Most people are not completely prosocial
(as are the Prosocial and Altruistic personas, who, being completely
prosocial, accept almost all suggestions even if they are highly in-
convenienced by them), and so are likely to be much more satisfied
(and willing to adjust) if we take their satisfaction into account.

Figures 8 and 9 show the Cohen’s d effect sizes and corresponding
95% confidence intervals of Sat+Spatial compared to Spatial,
Profile, and the untrained baseline.

7.4.2 Evaluating Hypothesis H
empathy

. Figure 10 provides a sum-
mary of the persuasive value phrase distribution learned by our
bandit model for the prosocial rider, and Table 6 shows the Hellinger
distance between the actual and predicted persuasive value phrase
distributions for each of the experiments. The Hellinger distance
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Table 6: Hellinger distance between actual and predicted

persuasive value phrase distributions.

Experiment Hellinger Distance

Prosocial 0.391
Altruistic 0.338
Moderate 0.604
Competitive 0.316
Individualistic 0.261

quantifies the difference between two probability distributions and
is defined for two discrete probability distributions 𝑃 = (𝑝1, . . . , 𝑝𝑘 )
and 𝑄 = (𝑞1, . . . , 𝑞𝑘 ) as

H(P,Q) =
1
√
2
×

√√√
𝑘∑︁
𝑖=1

(√𝑝𝑖 −
√
𝑞𝑖 )2. (5)

7.4.3 Evaluating Hypothesis H
profile

. With the current rider profile
data, there is a slight improvement in Profile compared to the
untrained baseline, as shown in Figures 6 and 7.

7.4.4 Summarized Results. We now summarize how we answer
the research questions introduced in Section 1.
RQ

tolerance
Can we learn riders’ spatial tolerances to suggest opti-

mal spatial adjustments? We answer this question positively
based on Figures 6, 7, 8, and 9 in Section 7.4.1.

RQ
empathy

Can we learn riders’ empathetic tendencies to persuade
them to adjust? We answer this question positively based on
Table 6 in Section 7.4.2 and Figure 10 in Section 7.4.2.

RQ
profile

Could considering rider profile data lead to a better (non-
naive) starting point? We answer this question positively
based on Figures 6 and 7 in Section 7.4.1.

8 DISCUSSION

We present a conception of a prosocial approach to microtransit to
create a more equitable and sustainable ecosystem. We demonstrate
the working of our idea with a prototype app, as well as experi-
ments using a cognitive architecture as a surrogate for a human
rider, to show that rider preferences (both acceptable spatial adjust-
ments and persuasive strategies) can be learned with reinforcement
learning and used to persuade them to help others. We show that
basic rider profile data is enough to customize a model with some
initial knowledge.

We find that the methods are effective for riders with varying
levels of prosociality. As we found through the focus groups, many
riders are prosocial at the outset, and considering rider satisfac-
tion can help persuade even the less prosocial riders to behave
prosocially.

We show that with ACT-R, we are able to model diverse riders,
whose varied responses to suggestions indicate the differing inter-
nal satisfaction they derive from their actions. Our results show
that ACT-R can be used to model human decision-making in simu-
lations where human input is required and relevant or sufficient
data is not available, accounting for people with different behaviors
and motivations.

Our results suggest that if we combine this work with an opti-
mizer that optimizes a system-level or higher priority metric, we
could calculate adjustments that are of the least inconvenience to
riders while increasing the prosociality of the entire system.

8.1 Challenges

Using AI-based interventions to change user preferences or behav-
ior, even for a good societal objective, is potentially ethically risky.
Key challenges include a deeper understanding of consent [23] and
privacy requirements [17] so that an AI agent does not violate a
user’s autonomy.

A more general challenge is that of achieving trust. A decision
about trust brings forth judgments of an agent’s ability, benevolence,
and integrity [14]. The same constructs form an effective basis for
assessing the trustworthiness of AI agents [21]. Besides the inherent
benefits of ensuring that our STSs promote trust and that our agents
are trustworthy, another motivation for trust is practical: Once a
user loses trust in the system, they may elect not to participate or
participate only to the extent necessary, e.g., by disregarding any
attempted persuasion and thereby forgoing the prosocial outcomes
we desire.
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