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ABSTRACT
AI for social impact (AI4SI) offers significant potential for address-

ing complex societal challenges in areas such as public health, agri-

culture, education, conservation, and public safety. However, exist-

ing AI4SI research is often labor-intensive and resource-demanding,

limiting its accessibility and scalability; the standard approach is

to design a (base-level) system tailored to a specific AI4SI problem.

We propose the development of a novel meta-level multi-agent

system designed to accelerate the development of such base-level

systems, thereby reducing the computational cost and the burden

on social impact domain experts and AI researchers. Leveraging

advancements in foundation models and large language models,

our proposed approach focuses on resource allocation problems

providing help across the full AI4SI pipeline from problem formu-

lation over solution design to impact evaluation. We highlight the

ethical considerations and challenges inherent in deploying such

systems and emphasize the importance of a human-in-the-loop

approach to ensure the responsible and effective application of AI

systems.
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1 INTRODUCTION
Artificial intelligence (AI) for social impact (AI4SI), which focuses

on leveraging AI to address societal issues, has gained traction in

both academia and industry [14, 20, 30, 45, 68]. With advancements

in AI and multi-agent systems, there is an opportunity to apply

these technologies to complex problems in areas like public safety,

wildlife conservation, and public health [29, 44, 50, 86]. Previously,

AI4SI research has been very labor-intensive, as it is oftentimes

necessary to develop customized approaches going beyond con-

ventional methods to address the challenges characteristic to these

domains such as low resources and noisy or scarce data. This lim-

its the overall impact of AI4SI research, as every individual effort

requires non-trivial time, expertise, and financial investment. We

envision the formation of a new approach to AI4SI which is less

labor-intensive, customizable by non-experts, and can thus be made

more widely available. We believe promising progress can be made

on this vision by employing recent methodological advancements

in computer science research, tapping into a substantial currently

unleveraged potential.

In this paper, we will use resource allocation problems, which

often arise in AI4SI domains [4, 5, 22, 49, 62, 68, 86, 125] as our

running example, yet our general ideas also apply more broadly.

Some examples of previously studied resource allocation problems

in AI4SI include strategically scheduling patrols in protected con-

servation areas [32, 34, 36, 108] and distributing scarce healthcare

resources to optimize people’s health outcomes [12, 60, 76, 84, 125].

We envision a meta-level multi-agent system that helps
us accelerate the development of base-level systems, which
tackle specific AI4SI problems. The meta-level system would

help non-profits and AI researchers in social impact domains lever-

age AI without having to invest significant amounts of labor and

resources to build a tailored base-level system from scratch. Our

envisioned system leverages foundation models, which are typically

developed by pretraining on available datasets, and can be used on

different downstream tasks or new challenges [8, 13, 47, 85, 124].

Our proposed system involves: (i) using LLM based meta-level

agents to communicate with decision makers in human language to

understand the problem from the perspective of decision-makers;

(ii) employing meta-level agents and foundation models for AI4SI

problems to design base-level systems for AI4SI problems; and (iii)

using meta-level agents for field-testing solutions to validate their

impact.

Importantly, instead of taking over the AI4SI pipeline,
the meta-level system will accelerate the process, improve
generalization, and enable thorough evaluation, with human-
in-the-loop required in each part of the system.Wewill discuss

and highlight major challenges and our vision for each phase of

this system, emphasizing the multi-agent aspect. We also discuss

ethics and fairness aspects.

The current era of foundation models has led to contemplation

on the challenges and opportunities that such models may offer in

multiple areas, from medical AI [61] to autonomous supply chains

[112], autonomous mining [53], and robotics [88]. In comparison

with these previous works, this paper focuses on the use of founda-

tion models in AI4SI. Moreover, even within AI4SI, we exemplarily

focus on optimizing the allocation of limited resources, providing

an analysis of challenges in a specific aspect of AI4SI. Furthermore,

in contrast to previous work, we focus more on foundation-model-

based agents at the meta-level, to assist base-level systems that

optimize these limited resources, rather than replacing the base-

level system entirely. This enables existing well-developed resource

optimization tools to be brought to bear on relevant challenges as



required, allowing instead the foundation models to configure the

tools as needed.

2 PRELIMINARIES
We formally define the key concepts of meta-level and base-level

systems, which we will refer to throughout this work.

Definition 1 (Meta-level and base-level systems). A base-
level AI4SI system is the actual deployed system that will solve the
problem on the ground. A meta-level system helps us accelerate the
development of a base-level system or accelerate its modification as
needed for a new objective.

Notably, a meta-level system does not actually solve an AI4SI

problem. Ameta-level systemmay involve severalmeta-level agents,

each responsible for different tasks in the development of the base-

level system, which may interact with each other. In the context

of the use cases we are focusing on in this paper, the base system

itself will be a multi-agent system or one that models multi-agent

interactions such as a social network. The base-level agents present

in the base-level system are defined as follows:

Definition 2 (Base-level agents). In the base-level system,
the base-level agents model or serve as abstract representations of
individuals or entities in the real-world.

Whereas the idea of a meta-level architecture has been proposed

in agent architectures, there the idea is to directly assist agents in

their immediate problem solving [19, 33, 71, 94]. In our work, the

meta-level refers to deciding which agents and how many to select,

how to evaluate their performance, and other such tasks. Another

difference is that at least as conceived now, our meta-agents are

focused on assisting humans in building base-level agents.

Another key concept we will frequently refer to is meta-level

agents and hence the name MAAI for our proposed framework

(meta-level agents for accelerated impact).

Definition 3 (Foundation-model-based agents (Meta-level

agents)). In the meta-level system, we use meta-level agents that
employ foundation models including LLMs. We will refer to these
agents as Meta-level agents

Remark 1. In this work, we focus on social impact and we address
challenges unique to social impact domains, such as limited resources
and high-stake decision making.

An AI4SI pipeline typically involves three phases [14, 68]:

Formulate the problem Identify how to best represent or model

the real-world entities and multiple stakeholders involved in

the on-the-ground problem, along with their constraints and

objectives. For example, the real-world entities may include

individuals enrolled in social welfare programs and decision-

makers such as non-profit program managers. Previously,

this effort was largely manual and involved multiple parties,

including nonprofits and AI researchers [23, 77, 82].

Design solution method Identify appropriate solution methods

and adapt them to design the base-level system. Previously,

this process was largely manual in terms of researcher efforts

to tailor advances in AI algorithms to the specific application

scenarios. The adaptation to different application scenarios

was also largely manual [10, 24, 65, 89, 98, 107].

Evaluation, refinement, and deployment Testing, improving,

and deploying solutions has typically been done manually,

adding to the workload of researchers and even more impor-

tantly to that of resource-constraint NGO workers [86].

Notably, each step in the AI4SI pipeline poses its own challenges

[79], implying that AI4SI work often requires substantially more

effort than pure AI algorithmic improvement research. Specifically,

formulating the problem and collecting detailed information (e.g.

potential decisions available and their impact on each of the in-

dividuals) can be time-consuming and expensive [72]. Moreover,

designing solution methods can require significant time from AI

experts and social impact domain experts [82], who must work

together to devise a tailored solution method for every application

scenario. Thorough testing and evaluation before deployment often

require substantial manual effort, as detailed simulation studies are

often required (e.g. by regulations or as precautionary measures)

[7], and AI experts typically manually design each simulation study

from scratch.

For our running example, we consider allocating limited inter-

ventions (specifically live service calls made by health workers) in

ARMMAN, which is a non-profit in India focusing on improving

health awareness for expectant and new mothers [75, 124]. Their

health workers make service calls to boost the engagement of moth-

ers enrolled in their health information program. They have shown

that AI powered solutions can reduce engagement drops by about

30% in real-world deployment [59, 89].

3 FORMULATING THE PROBLEM
In this phase, we discuss how to formulate an AI4SI problem. Exist-

ing works require researchers and human experts in AI to talk to

collaborating non-profit organizations to understand who makes

the decisions within a problem and gather key information on the

agents such as demographics [86, 97]. This process is expensive

and labor-intensive, and non-profits may not have AI-trained staff

to assist with this, making it difficult to ensure that AI solutions

are accurately tailored to the complexities of the real-world prob-

lem. Thus, previous works often require AI researchers to have

numerous rounds of discussions with non-profits and arrange a

field trip to speak with key stakeholders in social good programs.

Whereas these discussions are fundamental to AI4SI, some of the

work oriented toward formulating the right base-level model is

repetitive. To accelerate this work we propose the following vision:

Vision 1. Employ Meta-level agents to (i) identify the base-level
agents involved, (ii) find an adequate formal description for the setting
(e.g. as a Markov Decision Process), and (iii) define key components of
the settings (e.g. state space, action space, and reward function in a
MDP).

The Meta-level agents may use large language models to com-

municate with a partnering non-profit to formulate the social chal-

lenge as an AI problem and to understand who makes the deci-

sions within a problem. The world knowledge of LLMs may help

the Meta-level agent uncover confounding variables and undocu-

mented information[38, 39, 43, 51, 74, 87, 100, 111]. The Meta-level

agent should determine what information the individuals or enti-

ties in the real-world have to guide their decisions. The Meta-level



Figure 1: Overview of our proposed AI for social impact (AI4SI) workflow. The three key phases, formulating the problem,
designing the solution methods, and testing and deployment, are discussed in Sections 3, 4, and 5 respectively.

agent should then define base-level agents to model the individuals

or entities and make proper assumptions about the information

available to them.

The Meta-level agent may gather data from past interactions,

including the effects of actions, and observed costs or rewards, and

interactions between agents [28, 70, 126]. The Meta-level agent, po-

tentially LLM-based, could communicate directly with beneficiaries

enrolled in non-profit’s program in their native language to gain a

clearer perspective and would not have time constraints.

Running Example 1. In ARMMAN, the base-level agents repre-
sent beneficiaries enrolled, and the state and action space correspond
to beneficiaries’ engagement levels and possible schedules of service
calls, respectively. The Meta-level agent should have conversations
with domain experts in ARMMAN to find out that one way to ap-
proach this application scenario is to model beneficiaries as agents
that followMarkov Decision Processes. After that, the Meta-level agent
should define the state space, action space, and other key parts of the
MDP.

4 DESIGNING SOLUTION METHODS
In this phase, we elaborate on how to design a solution method

for AI4SI problems. Existing approaches often require manually

designing solution methods tailored to each application scenario

[2, 56, 57, 99, 106, 113, 128]. This approach fails to easily adapt to

new application scenarios or knowledge and data from previous

application scenarios, motivating the development of foundation

models to accelerate solution approaches for problems in AI4SI.

Besides adaptation ability, other aspects that are of particu-
lar importance when designing solution methods in AI4SI
problems include ethics, fairness, and collaboration among
base-level agents. We will motivate each of these aspects and
propose our visions to address them.

Adaptation is crucial in AI for social impact domains due to

the dynamic and evolving nature of these environments. Social

issues are often complex and multifaceted, with priorities evolv-

ing overtime [7, 11, 21, 64, 91, 93, 114]. A foundation model for

resource allocation could accelerate developing solutions for differ-

ent application scenarios without incurring repeated development

costs, making them more affordable and accessible to low-resource

communities [13, 15, 119, 124]. For example, a foundation model de-

signed to analyze medical data can be adapted to different diseases,

health conditions, or populations, improving health outcomes on

a larger scale [52]. Based on advances in foundation models and

adaptation, we propose the following vision:

Vision 2. Build a foundation model for resource allocation prob-
lems in AI4SI domains that can be adapted to and finetuned on specific
application scenarios. For each new AI4SI application scenario, em-
ploy a Meta-level agent to leverage the foundation model and provide
solution methods.

Running Example 2. A concrete example of foundation model
for resource allocations tasks is given by Zhao et al. [125], who de-
velop a pretrained restless bandit model that can be finetuned on
various resource allocation application scenarios that ARMMAN may
encounter. Currently, the application scenarios have different number
of base-level agents and different amounts of distribution shifts. Here,
our research idea is to start with such a foundation model and allow
an Meta-level agent to adapt and specialize it to newer scenarios that
may involve bigger changes than just differences in numbers of base-
level agents. This could include new application scenarios that may
need a change of the states and actions in the restless bandit model.

To address the inherent complexity of social challenges, we may

also use Meta-level agents in the form of Large Language Model

(LLM) to process and understand human instructions, queries, and

feedback from stakeholders to alter the priorities within the re-

source allocation process [55, 81, 95, 96, 101, 110, 120]. For example,

in the ARMMAN domain, a program manager may suggest prior-

itizing a specific segment of the underserved population such as

those older in age, which an LLM could interpret and accordingly

adjust the restless bandit resource allocation model by changing its

reward function [7, 83].

Besides the adaptation aspect, fostering efficient collaboration

among multiple base-level agents plays an important role in AI4SI

research. Recall that a base-level agent serves as an abstract repre-

sentation of an individual or an entity in the real-world. In some

problems,multiple base-level agentsmay collectively plan to counter

an adversary such as wildlife poacher or terrorists [36, 78, 105]. In

other problems, multiple base-level agents may communicate to

mitigate the impact of data errors, which frequently arise in real-

world situations due to factors such as inconsistent data collection

methods and deliberate noise introduced for differential privacy

[25, 26, 66, 115, 116, 127].

However, previous works in AI4SI often require human experts

in AI to manually craft ways of collaboration among base-level

agents for specific AI4SI domains. An Meta-level agent can help

with this process to accelerate AI for social impact work:

Vision 3. The Meta-level agent, when designing solution methods
for base-level systems, should design effective communication channels



and strategies for base-level agents. Specifically, these channels should
allow base-level agents to learn from each other’s experience and to
improve decision-making.

Although the above vision on developing collaboration may

appear to be straightforward for human-AI experts crafting solution

methods, it is not easy for Meta-level agents to figure out due to

complex relationships between base-level agents [46, 54, 69, 90, 92,

123]. The Meta-level agent may use the world knowledge of LLMs

to understand which communications can be potentially useful and

should be included in the design of solution methods [16, 117]. Here

a communication channel may be that an individual or entity talks

to another via cellular network or other infrastructure in place.

4.1 Ethics and Fairness
In high-stakes resource allocation scenarios like healthcare, au-

thorities frequently prioritize certain groups based on sensitive

attributes, aiming to address the needs of those most disadvan-

taged [1, 84, 103]. For example, governments may mandate non-

discrimination based on sensitive attributes, while non-profits may

prioritize low-income groups. Given the importance of fairness in

base-level system design and the solution method’s tangible impact

on people’s lives, we propose the following idea:

Vision 4. Ensure that the Meta-level agent recommends the de-
sign of a base-level system that does not discriminate against any
subpopulation or result in unfavorable outcomes for under-privileged
groups.

When accelerating the design of base-level systems, the Meta-

level agent should ensure fairness guarantees or fairness checks are

in place. This can be done by explicitly incorporating fairness in de-

signing base-level systems for social impact applications [84, 121].

However, this added complexity is difficult for Meta-level agents

to handle, due to the fact that AI may not easily understand demo-

graphic information available in text or abstract fairness concepts

potentially based on demographics.

Running Example 3. In ARMMAN a concrete example of fairness
constraints is the enforcement of non-discrimination based on sensi-
tive attributes and the prioritization of low-income and low-education
groups to reduce socio-economic disparities. In the ARMMAN con-
text, demographic information for enrolled beneficiaries are available.
When designing a base-level system, the Meta-level agent could en-
force fairness constraints such as that each beneficiary must receive
a sufficient amount of resources within some time. Additionally, the
Meta-level agent should prioritize underprivileged groups by explicitly
optimizing a fairness objective (e.g. Max Nash Welfare or Maximin
Reward) in the solution method.

5 TESTING AND DEPLOYMENT
In this phase, we explain how to thoroughly evaluate and deploy

AI models for social impact domains. We use Meta-level agents to

improve model testing and facilitate real-world deployment.

Deploying an AI model in real-world social impact domains

without sufficient simulation studies may result in poor decision-

making on crucial public resources. Thus, thoroughly testing and

evaluating AI algorithms or trained models is an important aspect

of accelerating AI for social impact. Based on above, we propose

the following research idea:

Vision 5. Employ Meta-level agents, based on LLMs, to simulate
agents’ behaviors. Here we wish to build a powerful simulator that
serves as a good proxy of real-world deployment environment and
can effectively evaluate the performance of trained models.

LLM based simulators have recently received great interest, and

there is demonstrated success in using LLMs to simulate human

behaviors in fields including education, healthcare, and social sci-

ences [3, 17, 58, 73, 80, 102, 109, 118]. To build such a LLM simulator

/ evaluator for AI4SI problems, we should represent observations

and possible decisions in a way that the LLM can understand, and

potentially use textual descriptions combined with structured data,

to help the LLM simulator generate contextually appropriate (e.g.

suitable for the domain) individual behaviors. Furthermore, textual

descriptions on individual’s characteristics, such as demographic

information (age, gender, geographical location, etc) may help LLMs

to better understand how individuals’ condition would evolve over

time. For a particular AI4SI problem, we may need to finetune

LLMs on historical data collected to better simulate the individual’s

trajectories.

Running Example 4. In the ARMMAN application, we need to
thoroughly test algorithms before real-world deployment. An Meta-
level agent can employ LLMs to perform agent-based simulations
to evaluate learning algorithms [37, 63], or use cognitive models to
augment ML based evaluation approaches [35, 75].

Having discussed evaluation before real-world deployment, we

now move on to challenges in the deployment. During the deploy-

ment of AI models, there can be shifts in the user base or shifts in

people’s behaviors [6, 27, 41, 42]. Different from adaptation ability

taken into account during model development and training, distri-

bution shifts in testing can be unexpected and the need to handle

these shifts can be urgent. This brings the next research idea:

Vision 6. Have an Meta-level agent that could (i) involve human-
in-the-loop and implement real-time monitoring to track model per-
formance and detect shifts in user behavior or data distribution; (ii)
use feedback from either human or AI to adjust the model (e.g. enhance
model fairness when there are unexpected distribution shifts).

Specifically, we may use a feedback loop to gather data on model

predictions and user interactions, allowing for prompt detection

of shifts in behavior [7, 9, 104]. Once substantial shifts in user

behaviors are detected, we could then involve human experts, po-

tentially from partnering non-profit organizations, to review and

provide feedback on model predictions and decisions. This feed-

back can then be used to guide model adjustments and improve

its response to distribution changes. We may retrain or finetune

the model using newly collected data, potentially weighting recent

data more to better align with current trends and user behavior

[13, 18, 31, 40, 48, 67, 122].
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