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ABSTRACT

Games have been vital test beds for the rapid development of Agent-
based research. Remarkable progress has been achieved in the past,
but it is unclear if the findings equip for real-world problems. While
pressure grows, some of the most critical ecological challenges
can find mitigation and prevention solutions through technology
and its applications. Most real-world domains include multi-agent
scenarios and require machine-machine and human-machine col-
laboration. Open-source environments have not advanced and are
often toy scenarios, too abstract or not suitable for multi-agent
research. By mimicking real-world problems and increasing the
complexity of environments, we hope to advance state-of-the-art
multi-agent research and inspire researchers to work on immediate
real-world problems.

Here, we present HIVEX, an environment suite to benchmark multi-
agent research focusing on ecological challenges. HIVEX includes
the following environments: Wind Farm Control, Wildfire Resource
Management, Drone-Based Reforestation, Ocean Plastic Collection,
and Aerial Wildfire Suppression. We provide environments, train-
ing examples, and baselines for the main and sub-tasks. !

KEYWORDS
Legends, Myths, Folktales

ACM Reference Format:

Anonymous Author(s). 2025. HIVEX: A High-Impact Environment Suite
for Multi-Agent Research. In Proc. of the 24th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan,
USA, May 19 — 23, 2025, IFAAMAS, 44 pages.

1 INTRODUCTION

Currently, no open-source benchmark for multi-agent reinforce-
ment learning (MARL) closely mimics real-world scenarios focused
on critical ecological challenges, offering sub-tasks, fine-grained
terrain elevation or various layout patterns, supporting open-ended
learning through procedurally generated environments and pro-
viding visual richness. Most common benchmarks with direct real-
world applications are in the following domains: 1. intelligent ma-
chines and devices, 2. chemical engineering, biotechnology, and
medical treatment, 3. human and society, and 4. social dilemmas
[49].

The main HIVEX environment features are either procedurally gen-
erated or sampled from a random distribution. Therefore, training
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and evaluation are differentiated by seed values, ensuring test-
ing scenarios are not seen during training. We aim to assess and
compare MARL algorithms, focusing on test-time evaluation with
zero-shot test scenarios. If applicable, a scenario consists of an
environment and a task-pattern or terrain elevation combination.
Each environment has a main end-to-end task and isolated subtasks
that are independent or part of the main task. Environments have
between two and nine tasks, various layout patterns, or terrain ele-
vation levels. The environments described are ordered by increasing
complexity in observation size and type, action count and type, and
reward granularity, including individual and collective rewards.
We introduce combinations of vector and visual observations and
discrete and continuous actions.

Climate change is manifesting more visibly and urgently than
ever [2, 64]. We are witnessing an increase in frequent and intense
weather phenomena, such as storms, droughts, fires, and floods
[72]. Figure 8 shows the aforementioned disaster types triple in
frequency between 1980 and 2020. These events reshape ecosys-
tems and critically impact agriculture and natural resources vital
to human survival [9]. A concerning report by the Intergovern-
mental Panel on Climate Change (IPCC) in 2022 highlights the
dire consequences of continued greenhouse gas emissions, warn-
ing that significant curbing measures are needed within the next
three decades to avert catastrophic impacts. Suppose the 1.5 °C
degree increase in global warming cannot be negated. In that case,
some impacts may be long-lasting or irreversible, such as the loss
of ecosystems potentially fundamental to our existence [35]. For
further background and motivation behind this work, please refer
to the Motivation: Critical Ecological Challenges section in the
Appendix A.2.

2 THE HIVEX ENVIRONMENT SUITE

HIVEX addresses ecological challenges, developed in Unity using
the ML-Agents Toolkit [38]. Each environment mimics a real-world
scenario where multiple agents interact, collaborate, and compete,
providing rich settings for multi-agent research. Scenarios include:
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(1) Wind Farm Control: Agents adjust turbine orientations
based on wind conditions.
(2) Wildfire Resource Management: Agents allocate firefight-
ing resources during wildfires.
(3) Drone-Based Reforestation: Drones collaborate to plant
trees in deforested areas.
(4) Ocean Plastic Collection: Cleanup vessels locate and re-
trieve plastic waste from oceans.
(5) Aerial Wildfire Suppression: Firefighting planes work
together to extinguish wildfires and protect the village.
Agents receive vector and visual observations from their environ-
ment and perform multi-faceted actions such as adjusting turbines,
shifting resources, planting seeds, and collecting ocean plastic. Real-
world constraints are imposed, such as drone battery life limitations,
requiring strategic recharging to maximize efficiency.

2.1 Wind Farm Control

Table 1: Environment Specifications: Wind Farm Control

Category Parameter Description/
Value

General Episode Length 5000
Agent Count 8
Neighbour 0
Count

Vector Observations (6) Stacks 1
Normalized True
Turbine Location  p(x,y)
2 )
Turbine Direc- dir(x,y)
tion (2)
Wind Direction wair(x, y)
()

Visual Observations (0) - -

Continuous Actions (0) - -

{0: Do Nothing, 1:
Rotate Left, 2: Ro-
tate Right}

Discrete Actions (1) Rotate Turbine

Wind Farm Control
Environment

Main Wind Direction

Wind Noise Field Wind Turbine Agent

Figure 1: Wind Farm Control main environment features.
Details in the Appendix 11.

2.1.1  Environment Specification.

2.1.2  Main Task and Rewards. Generate Energy - The agent’s goal
is to rotate the wind turbine to be oriented against the wind di-
rection and generate energy. The agent receives a positive reward

in the range of [0, 1] at each time step. This reward corresponds
to the performance of each wind turbine and is being calculated
as described in equation 4. Orienting the wind turbine against the
wind yields a high reward.

A comprehensive task list and description for the Wind Farm Con-
trol environment can be found in the Appendix A.9.1. We also
provide extensive reward description and calculation in the Appen-
dix A.8.1.

2.2 Wildfire Resource Management

Table 2: Environment Specifications: Wildfire Resource Man-
agement

Category Parameter Description/
Value

General Episode Length 500
Agent Count 9
Neighbour 3
Count

Vector Observations (16)  Stacks 2
Normalized True
Closest Fire Lo- p(x,y,z)
cation (3)
Temperature (1) ¢
Humidity (1) h
Overcast (1) 0
Total Support (1) ts

Visual Observations (0) - -

Continuous Actions (0) - -

Add/Sub Re- {0: No Action, 1:
source: Self Add, 2: Sub}
Add/Sub Re- {0: No Action, 1:
source: Neigh- Add, 2: Sub}
bour 1

Add/Sub Re- {0: No Action, 1:
source: Neigh- Add, 2: Sub}
bour 2

Add/Sub Re- {0: No Action, 1:
source: Neigh- Add, 2: Sub}

bour 3

Discrete Actions (4)
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Figure 2: Wildfire Resource Management main environment
features. Details in the Appendix 13.

2.2.1  Environment Specification.



2.2.2  Main Task and Rewards. Resource Distribution - At each time
step, the agent distributes a total of 1.0 resource units, in increments
of 0.1, to either itself or neighbouring watchtowers. If the agent
runs out of resources, it must first reallocate resources from itself
or neighbouring watchtowers before redistributing. The agent’s
priority is to allocate resources to the watchtowers closest to and
most threatened by incoming fires. The agent earns rewards based
on three factors. First, it receives a positive reward corresponding
to the performance of the watchtower it controls, weighted by the
amount of resources allocated to itself, as described in Equation 9.
Second, the agent also gains a reward based on the performance
of neighbouring watchtowers, which is weighted by the resources
allocated to them, as outlined in Equation 10. Additionally, extra
rewards are given for distributing resources effectively to neigh-
bouring watchtowers. Finally, the agent’s overall reward includes a
component that reflects the sum of the performance of all agent-
controlled watchtowers, detailed in Equation 12.

For more detailed information on the task descriptions and reward
calculations, please refer to the Appendix (A.9.2) and (A.8.2).

2.3 Ocean Plastic Collection

Table 3: Environment Specifications: Ocean Plastic Collection

Ocean Plastic Collection Agent Trash Field Nearest Neighbours

Trash Population Map

Figure 3: Ocean Plastic Collection main environment fea-
tures. Details in the Appendix 17.

other vessels and crossing the environment’s border. The agent
receives a positive reward of 1 for each floating plastic pebble
collected. Furthermore, the agent receives a positive reward for
the lowest collected trash count amongst all agents at each time
step. The lowest trash count is scaled by 0.01. The steps to calculate
the lowest collected trash count reward can be found in Equation
15. Finally, the agent receives a negative reward of —100 when the
border is crossed.

A comprehensive task list and description for the Ocean Plastic
Collection environment can be found in the Appendix A.9.3. We
also provide extensive reward description and calculation in the
Appendix A.8.3.

2.4 Drone-Based Reforestation

Category Parameter Description/
Value
General Episode Length 5000 e
Agent Count 3
Neighbour 1
Count
Vector Observations (12) Stacks 2
Normalized True
Local Position p(x,y)
2) )
Direction (2) dir(x,y)

Closest Neigh- np(x,y)
bouring Vessel

(2)
Visual Observations (1250) Resolution 25x25x1
Stacks 2
Normalized True
Trash t=10,1]
Continuous Actions (0) - -
Discrete Actions (2) Throttle {0: Do Nothing,
1: Accelerate}
Steer {0: Do Nothing,

1: Turn Right,
2: Turn Left}

2.3.1 Environment Specifications.

2.3.2  Main Task and Rewards. Plastic Collection - The agent aims
to accelerate and steer the plastic collection vessel to collect as many
floating plastic pebbles as possible while avoiding crashing into

Terrain Forest

Optimal Reforestation Area Height Map

Figure 4: Drone-Based Reforestation main environment fea-
tures. Details in the Appendix 15.

2.4.1 Environment Specifications.

2.4.2  Main Task and Rewards. Maximizing Collective Tree Count -
The agent’s primary objective is to pick up seeds and recharge at
the drone station, explore fertile ground near existing trees, and
drop seeds while ensuring sufficient battery charge to return to the
station. For each successful seed drop, the agent receives a reward
based on two components: the quality of the drop location and
its proximity to other seeds and trees. The seed quality reward
ranges from 0 to 20, while the distance reward ranges from 0 to
10, giving a total possible reward of 0 to 30 for each drop. These
calculations are detailed in Equation 32. When carrying a seed, the
agent incurs a time-step penalty of —1/(episode * length/2), with
energy depletion penalties being higher when a seed is carried. If
the drone is not carrying a seed, the penalty is —1/episode * length.
The episode length is 2000 time steps. Additionally, the agent can
receive a bonus for returning to the drone station. After a seed
drop, the agent is also rewarded incrementally for reducing the
distance to the station, with steps of 2.5. The incremental return
reward ranges from 0 to 20 and is adjusted by a multiplier based on
the seed drop quality. For example, if a seed is dropped 50 meters
from the station, up to 20 incremental rewards may be received.
The calculation of this reward is described in Equation 40.
Detailed descriptions of tasks and rewards for the Drone-Based
Reforestation environment are available in the Appendix A.9.4 and
A84.



Table 4: Environment Specifications: Drone-Based Reforesta-

Table 5: Environment Specifications: Aerial Wildfire Suppres-

tion sion
Category Parameter Description/ Category Parameter Description/
Value Value
General Episode Length 2000 General Episode Length 3000
Agent Count 3 Agent Count 3
Neighbour 0 Neighbour 0
Count Count
Vector Observations (20)  Stacks 2 Vector Observations (8) Stacks 1
Normalized True Normalized True
Distance to dg Local Position p(x,y)
Ground (1) 2)
Local Position p(x,y,z) Direction (2) dir(x, y)
(3 Holding Water hw = [0,1]
Direction (3) d_z:r(x, Y, 2) (1)
Drone Station dsh Closest Tree Lo- ¢t (x, 1)
Height (1) cation (2)
Holding Seed (1)  hs = [0,1] Closest Tree ctb=[0,1]
Energy Level (1) el Burning (1)
Visual Observations (256) Resolution 16x16x1 Visual Observations (1764) Resolution 42x42x3
Stacks 1 Stacks 1
Normalized True Normalized True
Downward Grayscale (256), Downward RGB, [r,g,b] =
Pointing Cam- ¢ =[0,1] Pointing Cam- [[0, 1], [0,1], [0,1]]
era era
Continuous Actions (3) Throttle [-1,1] Continuous Actions (1) Steer Left/Right [-1,1]
Steer [-1.1] Discrete Actions (1) Drop Water {0: Do Nothing,
Up/Down [-1.1] 1: Drop Water}
Discrete Actions (1) Drop Seed {0: Do Nothing,

1: Drop Seed}

Aerial Wildfire Suppression
Environment

Overcast

Temperature Humidity

Figure 5: Aerial Wildfire Suppression main environment fea-
tures. Details in the Appendix 19.

2.5 Aerial Wildfire Suppression

2.5.1 Environment Specifications.

2.5.2  Main Task and Rewards. Minimize Fire Duration and Protect
the Village - The agent’s primary goal is to pick up water and
extinguish as many burning trees as possible or prepare unburned
forest areas to prevent the spread of fire. A secondary goal is to
protect the village by preventing fire from getting too close, either
by extinguishing burning trees or redirecting the fire through tree
preparation. Crossing the environment’s boundary (a 1500x1500
square surrounding a 1200x1200 island) results in a negative reward
of —100. Steering the aeroplane towards the surrounding water
girdle (300 units wide) earns a positive reward of 100. There is
also a small time-step penalty of —1/MaxStep. If the fire across the

entire island is extinguished, with or without agent intervention, a
positive reward of 10 is given. If the fire reaches within 150 units
of the village centre, the agent receives a penalty of —50.

A detailed task list and reward breakdown for the Aerial Wildfire
Suppression environment is provided in the Appendix (A.9.5), along
with further information on reward calculations in the Appendix
(A.8.5).

3 RELATED WORK

While the HIVEX environments can be situated close to some ex-
isting MARL benchmarks in the domain of UAVs [17, 43, 57, 59],
energy supply [62] and resource handling [4, 31, 56], we believe
there is a gap for critical ecological challenges such as wildfires
[45, 71], pollution [76] and deforestation [22].

Many environment suits available are grid-based and have very
simple 2D visual representations such as Level-Based Foraging [11],
PressurePlate, Multi-Robot Warehouse (RWARE) [54], Pommerman
[61], or Overcooked [8] and many more. By enriching the visual
representation of these environments and reducing the level of
abstraction, we believe we can attract a broader range of disciplines
to engage with the HIVEX environments suite.

Procedurally generating environment features, such as level de-
sign, tasks [6, 75], and agent populations have been adopted in



various environment suits, such as Meltingpot [42], Neural MMO
[68] and Capture the Flag [36]. We procedurally generate terrains
in various terrain elevation levels for Wildfire Resource Manage-
ment, Drone-Based Reforestation and Aerial Wildfire Suppression
environments 23. The environments Wind Farm Control and Ocean
Plastic Collection utilize noise maps and random sampling 21, 22,
23, 24, 25.

DeepMind’s work Melting Pot is a suite of test scenarios for
multi-agent reinforcement learning emphasising social situations
[42]. While we do not directly target social aspects in our envi-
ronments, our previous work has shown significant performance
improvements when introducing communication mechanisms in
earlier versions of HIVEX environments ANONYMIZED. However,
Melting Pot, with its 50 substrates (environments) and 256 unique
scenarios (tasks), has influenced the structural design of our envi-
ronment suite.

Work such as Neural MMO or LUX [10] focuses on efficient large
agent number environments. However, we believe that this is not as
important for our work, as the scenarios we have presented do not
require large amounts of agents. Nevertheless, we have shown that
our environments scale well across increasing numbers of agents.

There is a trade-off between simulated environments and ex-
perience samples from the real world. While The latter might be
expensive, mixtures of both can lead to success [66]. HIVEX focuses
on simulated environments. However, we would like to shorten the
sim-to-real gap in future work.

4 EXPERIMENTS AND RESULTS

180 1 w0

w1 w3 wms

Figure 6: Average test results for all environments for Cumu-
lative Reward and environment-specific metrics such as 1.
Wind Farm Control: Policy Loss, 2. Wildfire Resource Man-
agement: Individual Performance is the isolated individual
performance, 3. Drone-Based Reforestation: Recharge En-
ergy Count, which indicates how often a drone returned to
the drone station to recharge energy and pick up anew seed; 4.
Ocean Plastic Collection: Local Reward, which is the reward
for collecting plastic pebbles, 5. Aerial Wildfire Suppression:
Extinguishing Trees Reward.

We have trained and tested all environments across all tasks
and terrain elevation levels or patterns three times and report the
average and the error margin 6. The test runs represent the baseline

for the HIVEX environment suite. Extensive results can be found in
the Appendix in the section Additional Results A.10. Furthermore,
all checkpoints and logs can be found in the hivex-results repository.
We have used Proximal Policy Optimization (PPO) [65] for all train
and test runs (Appendix: Learning Algorithm A.4.1). We provide
hyperparameters for training in the Hyperparameters section A.5.

463 Wind Farm Control Drone-Based Aerial Wildfire Suppression

) PEEED H

0 12

6 & 10
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Environment/Cumulative Reward

Figure 7: Agent Number Scalability Test of Wind Farm Con-
trol, Drone-Based Reforestation, and Aerial Wildfire Sup-
pression environments.

We tested the scalability of selected HIVEX environments with
larger agent numbers, including Wind Farm Control, Drone-Based
Reforestation, and Aerial Wildfire Suppression. Wildfire Resource
Management and Ocean Plastic Collection were excluded from
scalability tests: the former has a fixed layout and agent count, while
the latter’s fixed amount of floating plastic would reduce per-agent
performance with an increased agent count. Wind Farm Control
has been tested on [1, 2, 4, 8, 12, 16], Drone-Based Reforestation and
Aerial Wildfire Suppression on [1, 2,3, 6,9, 12] agent counts 7.

5 DISCUSSION

The cumulative reward performance in Wind Farm Control ex-
hibits a stable trajectory across various layout patterns, indicating
a well-optimized policy that effectively manages changing wind
conditions. Despite minor fluctuations, the overall trend remains
consistent across different tasks.

In Wildfire Resource Management, cumulative rewards show
greater variability as task difficulty increases. Although rewards
initially rise with terrain elevation levels, they plateau and fluctuate
at higher levels, such as 4 and 8, marking the highest recorded
reward. A higher terrain elevation level has steeper mountains
and a more structured but sparse distribution of forest volume
along mountain ranges. This suggests the model struggles in open
fields where fire behaviour is less predictable. Nevertheless, the
model performs reasonably in most scenarios, demonstrating its
adaptability in real-world wildfire resource allocation. This trend is
further evident in the individual performance data.

The Drone-Based Reforestation task demonstrates relatively sta-
ble but declining cumulative rewards, indicating the model’s effi-
ciency in reforestation efforts despite struggling in more challeng-
ing scenarios involving steep terrain and sparse forest areas. The
"Recharge Energy Count" metric remains steady, even as terrain el-
evation increases, suggesting that while the agent struggles to find
optimal drop locations, it maintains consistent drop and recharge
activity. This metric’s stability across tasks suggests potential for
improvement, such as testing more energy-demanding tasks or
introducing tighter energy consumption constraints.

In Aerial Wildfire Suppression, task performance appears highly
sensitive to terrain elevation, with rewards dropping as complex-
ity increases. While the model performs well in scenarios with
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sparse forest volume and limited fire spread, it struggles in scenar-
ios with denser forests where fires can spread in all directions. As
in other tasks, higher terrain elevation reflects steeper terrain and
sparser forest distribution, requiring more frequent water drops
as fires spread more unpredictably. The "Extinguishing Trees Re-
ward" metric also reflects this variability, emphasizing the need
for refined strategies, such as pre-wetting trees to direct the fire in
lower-terrain elevation scenarios.

Overall, the baseline model demonstrates varying success across
difficulties and environments. The baseline results indicate that
the model efficiently learns routine conditions, but its performance
declines as the complexity of the tasks increases. This indicates
that the environments effectively introduce new challenges across
scenarios, patterns, or terrain elevation levels. Future work should
focus on adding even more difficult scenarios and edge cases.

The scalability analysis reveals that multi-agent systems in all
three environments - Wind Farm Control, Drone-Based Reforesta-
tion, and Aerial Wildfire Suppression - exhibit stable and positive
performance trends as agent counts increase. In Wind Farm Control,
the cumulative reward remains stable across all tested agent counts,
indicating that the system scales effectively without significant
performance degradation.

In Drone-Based Reforestation, the cumulative reward scales well,
with only a minor decrease beyond 9 agents. Tree drop counts
remain stable, reflecting consistent performance, while energy con-
sumption shows a slight upward trend, demonstrating good scala-
bility with manageable resource trade-offs.

For Aerial Wildfire Suppression, the cumulative reward is generally
stable as agent numbers increase, with a slight dip before recovering
toward 12 agents. The extinguishing reward follows a similar pat-
tern, showing an upward trend as agents increase, indicating that
the system scales well despite minor fluctuations. Overall, these
environments demonstrate good scalability across agent counts
with only minor trade-offs in specific metrics 7.

6 LIMITATIONS AND POTENTIAL IMPACTS

While our simulations provide a valuable foundation for MARL
research in addressing critical ecological challenges, several limita-
tions may affect their generalizability and real-world applicability.
One major limitation is how accurately these simulations repre-
sent real-world scenarios. Despite efforts to closely model actual
environments, simulations inevitably simplify complex conditions,
often failing to capture unexpected environmental variables and
interactions with dynamic objects.

For instance, turbines in the Wind Farm Control environment can
be turned much faster than in reality, and wind directions shift
too quickly and randomly. In contrast, real-world wind tends to
have a predominant direction in specific regions. In the Ocean
Plastic Collection environment, vessel turning and acceleration
speeds are significantly exaggerated. Similarly, in the Reforestation
environment, agents can pick up seeds simply by being near the
drone station, which does not reflect real-world conditions. Fire
spreads much faster in the Wildfire Resource Management and
Aerial Wildfire Suppression environments. Specifically, resources
are distributed too quickly in the Wildfire Resource Management
environment, while the claim is that the scenarios are in remote

areas.
Additionally, water-carrying planes turn much faster than would be
possible in reality, even when fully loaded. Furthermore, the cam-
era feed resolution in the Drone-Based Reforestation and Aerial
Wildfire Suppression environments is lower than what would be
needed in practice. Although the simulations perform well with
low resolution, we anticipate more challenges with diverse objects
in real-world scenarios.

These discrepancies could impact the real-world applicability of
our findings, but there are still promising areas for implementation.
For instance, algorithms developed in the Wind Farm Control envi-
ronment, despite their simplified wind patterns, could contribute to
optimizing wind farm layouts and improving maintenance strate-
gies, as seen in efforts by companies like Siemens Gamesa, which
integrates Al for predictive maintenance in real wind farms [67].
Similarly, wildfire management strategies derived from simulations,
though faster than real-world conditions, could assist in resource
distribution planning and suppression tactics, akin to systems used
by CAL FIRE in the United States [32]. Lastly, despite its simplified
nature, our reforestation environment could enhance large-scale
efforts such as the Great Green Wall initiative in Africa, which
seeks to restore degraded lands using new technologies [28]. These
applications demonstrate the potential utility of our simulations
when combined with real-world data and in-field validation.

A key limitation of the current environment design is its poten-
tial for bias, as the terrains and landscapes are generated within a
single climate zone. This restricts the diversity of environmental
conditions, excluding deserts, rocky regions, and other ecosystems
with distinct flora and fauna. To address this, future work could
incorporate real geographic data from diverse global regions, in-
cluding terrain, forest structure, and environmental variables like
wind speed, precipitation, temperature, and cloud cover. Collabo-
ration with companies and research labs will also be necessary to
adjust agent-controlled objects to align with real-world capabilities.
However, for specific applications such as wildfire or reforestation
simulations, only certain areas of the world are particularly rele-
vant, which naturally limits the range of applicable environments.
For instance, wildfire simulations are most pertinent in regions
such as Russia, Canada, and the United States, which experience
the highest tree cover loss due to fires [71]. Conversely, reforesta-
tion efforts are more urgent in areas like the Sahara, the Zinder
and Maradi regions [55], and the Amazon Rainforest [22]. Thus,
while the HIVEX environment suite offers a promising starting
point, fine-tuning based on real-world data is essential to achieve
meaningful real-world applications.

The HIVEX environment suite is designed for training and test-
ing on accessible end-user hardware. Our simulations have been
successfully executed on systems with an NVIDIA GeForce RTX
3090, an AMD Ryzen 9 7950X 16-Core Processor, and 64 GB of RAM
specifications within the range of many gaming laptops and desktop
computers. As such, researchers and practitioners do not need spe-
cialized, large-scale computational clusters, making our approach
accessible to those with mid-range to high-end consumer hardware.
Future optimizations could further reduce these requirements for
even broader accessibility.



7 CONCLUSION

The HIVEX suite is a novel open-source benchmark that simulates
real-world critical ecological challenges. It supports multi-agent and
open-ended research across diverse tasks and scenarios by offering
procedurally generated environments, as well as adjustable layout
patterns and terrain elevation levels. The wide range of environ-
ments, tasks, and scenarios provides a broad spectrum of challenges,
making HIVEX a valuable tool for testing new algorithms. In con-
clusion, while addressing critical ecological challenges remains the
primary focus, it is equally important to highlight the multi-agent
nature of the HIVEX suite. This characteristic plays a central role
in enabling diverse, open-ended research across a variety of tasks
and scenarios.

Future work aims to narrow the sim-to-real gap by incorporating
real-world data, such as terrain and weather conditions. Addition-
ally, key research directions include exploring whether a single
policy can generalize across terrain levels, patterns, sub-tasks, and
environments in the HIVEX suite, as well as investigating how ef-
fectively knowledge can transfer between environments and tasks.
Another important question is whether modular architectures can
scale more effectively than end-to-end approaches in these sce-
narios. Finally, future research will also focus on understanding
social behavior within these environments, particularly by lever-
aging communication dynamics. These directions will help guide
future exploration and ensure that HIVEX continues to serve as a ro-
bust platform for advancing research in multi-agent reinforcement
learning.
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A APPENDIX

A.1 Resources

NVIDIA GeForce RTX 3090

Driver version 536.23

AMD Ryzen 9 7950X 16-Core Processor
64 GB RAM

A.2 Motivation: Critical Ecological Challenges
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Figure 8: Climate-related global disasters frequency. The
links between climate change and natural disasters are well
documented in a wide variety of climate change literature.
This graph depicts the trend in global climate-related disas-
ters over time. Interactive plot and dataset can be explored
here: https://climatedata.imf.org/pages/climatechange-data.

Climate change is manifesting more visibly and urgently than
ever [2, 64]. We are witnessing an increase in frequent and intense
weather phenomena, such as storms, droughts, fires, and floods [72].
Figure 8 shows the aforementioned disaster types triple in frequency
between 1980 and 2020. These events are reshaping ecosystems and
critically impacting agriculture and natural resources, which are
vital to human survival [9]. A concerning report by the Intergov-
ernmental Panel on Climate Change (IPCC) in 2022 highlights the
dire consequences of continued greenhouse gas emissions, warning
that significant curbing measures are needed within the next three
decades to avert catastrophic impacts. If the 1.5 °C degree increase
in global warming cannot be negated, some impacts may be long-
lasting or irreversible, such as the loss of ecosystems potentially
fundamental to our existence [35].

Mitigation, Adaptation and Disaster Response. The battle against
climate change encompasses three critical approaches: mitigation,
adaptation and disaster response [16].

e Mitigation focuses on reducing emissions through transfor-
mative measures in electricity generation, transportation,
building design, industry practices, and land use.

o Adaptation, on the other hand, is about enhancing resilience
and improving disaster management strategies to prepare
for the inevitable impacts of changing climate patterns.
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Figure 9: Annual Global surface temperature change. This
indicator presents the global mean surface temperature
change during the period 1961-2021, using temperatures be-
tween 1951 and 1980 as a baseline. This data is provided
by the Food and Agriculture Organization Corporate Sta-
tistical Database (FAOSTAT) and is based on publicly avail-
able GISTEMP data from the National Aeronautics and Space
Administration Goddard Institute for Space Studies (NASA
GISS). Interactive plot and dataset can be explored here:
https://climatedata.imf.org/pages/climatechange-data.

o Disaster Response involves prompt and effective measures
to manage emergencies caused by climate-related events.
This includes providing immediate relief, medical aid, and re-
construction assistance and implementing policies for rapid
response and recovery to minimize the impact on affected
communities.

This tripartite approach is essential, as highlighted by the IPCC
report and echoed in the research by Collins et al. [15], underscoring
the importance of addressing both immediate and long-term aspects
of climate change.

Irreversibility. Recent research underscores the alarming irreversibil-
ity of certain impacts of climate change. A study at Arizona State
University, published in the Proceedings of the National Academy
of Sciences, explores the concept of 'rate-induced tipping’ in eco-
logical systems [52]. This research is crucial in understanding when
certain environmental systems, such as coral reefs, may reach a
point of irreversible damage [34]. As ocean temperatures rise due
to increased carbon emissions [73], corals and their symbiotic zoox-
anthellae (tiny cells that live within most types of coral polyps -
they help the coral survive by providing it with food resulting from
photosynthesis) are pushed towards a threshold beyond which se-
vere bleaching occurs [69], leading to a cascade of effects on the
entire reef ecosystem. This bleaching, once initiated, cannot be
reversed even if ocean temperatures were to subsequently stabilize,
illustrating the permanent nature of some climate change impacts.
The study emphasizes that even gradual changes in environmen-
tal parameters can suddenly trigger catastrophic system collapses,
highlighting the urgency of addressing climate change proactively
to prevent irreversible ecological damage [52].

Timeline and Urgency. The timeline for addressing climate change
is critical and urgent. According to the latest insights, there’s a

pressing need to accelerate climate action significantly to limit
global temperature rise to 1.5 degrees Celsius. This target requires
deep, rapid, and sustained greenhouse gas emissions reductions
across all sectors within this decade. Emissions need to decrease
immediately to stay within these limits and be cut by nearly half
by 2030 [7]. Figure 9 shows the global surface temperature change
in Celsius degrees per year from the baseline temperature between
1951 and 1980 [50].

The 2023 Yearbook of Global Climate Action, presented at the UN

Climate Change Conference (COP28) [34], emphasizes the urgency
of scaling up climate actions. It highlights the increase in stake-
holders taking climate action but also points out that the pace and
scale of these actions are insufficient to meet the 1.5-degree Celsius
target. The Yearbook calls for accelerated, effective implementation
of climate actions, emphasizing the critical role of governments in
reducing barriers to lowering greenhouse gas emissions and the
need for transformational changes in sectors like food, electricity,
transport, industry, buildings, and land use.
A major UN report, "Climate Change 2023: Synthesis Report" by the
Intergovernmental Panel on Climate Change (IPCC) [7], underlines
the significant impacts already being felt globally and the increased
frequency of extreme weather events due to climate change. The
report stresses the necessity of integrating adaptation to climate
change with actions to reduce or avoid greenhouse gas emissions.
It also points out the importance of financial and technical support
for developing countries from wealthier nations to achieve these
goals [19].

Role of Machine Learning. The vast array of challenges presented
by climate change also opens diverse opportunities for impactful
action [24, 39]. While the situation is grave, there is immense po-
tential for innovative solutions in areas such as renewable energy,
sustainable agriculture, and resource-efficient industrial practices.
The commitment to tackling these challenges is about averting dis-
aster and harnessing the opportunity for significant environmental,
economic, and social progress [5, 30].

The last two years have brought climate change to the doorstep
of many. Extreme heatwaves, wildfires, and floods make life increas-
ingly difficult for animals and humans [19]. ML has emerged as a
key tool for technological advancement in recent years. As ML and
artificial intelligence (AI) use in societal and global initiatives grows,
there’s a pressing need to explore how these technologies can best
address climate change challenges. Many in the ML field are eager
to contribute but unsure of the best approach, while various sectors
are increasingly seeking ML expertise.

ML has many applications in combating climate change for vari-
ous time horizons and degrees of impact [41, 63]. Straight forward
applications However, we think it’s crucial to acknowledge its fun-
damental role in enhancing our understanding of climate complex-
ities [23, 77]. ML, with its advanced data analysis capabilities, is
instrumental in deciphering the multifaceted nature of climate data.
It aids scientists and researchers in identifying patterns and trends
that are not immediately apparent, providing insights into phenom-
ena like temperature changes, precipitation patterns, and extreme
weather events [12]. This deepened understanding is the bedrock
upon which targeted solutions for climate change mitigation and
adaptation are developed.


https://www.fao.org/faostat/en/
https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
https://climatedata.imf.org/pages/climatechange-data

Granted patents per year Granted patents per year (log scale)

Climate Inventions Climate Inventions
Allnventions AlInventions
30000 { = Climate and Al ¢ Climate and Al

25000

20000

15000

Number of granted patents
Number of granted patents

10000

5000

o S Ny Ny
S $5 S S
» S B

o

Figure 10: Left: Granted patents per year, with a steeper rise
starting around 2010. Right: The rise on the left can be seen
as exponential growth in climate AI patents (linear on a
log scale), and this holds for climate patents and Al patents
separately. Within climate patents, however, Al patents are
not growing exponentially. [1, 74]

In the critical battle against climate change, ML emerges as a
pivotal ally, offering a diverse array of contributions across various
domains. By enabling automatic monitoring through remote sens-
ing, ML helps in identifying key environmental changes, such as
deforestation, and in assessing post-disaster damages. This technol-
ogy is particularly significant in the realm of ecosystem informatics
and sustainability, where it aids in understanding complex eco-
logical dynamics and biodiversity, supporting conservation efforts
and sustainable resource management [21, 25, 44]. ML’s ability to
process vast amounts of ecological data enhances our capacity to
track species populations, monitor habitat changes, and predict
ecological responses to various environmental stressors.

Further, ML accelerates scientific discovery, suggesting inno-
vative materials for batteries, construction, and carbon capture
technologies. Ecosystem informatics enables the identification of
patterns and relationships within ecological systems, facilitating
the development of strategies to protect and sustain these vital
systems. Additionally, ML optimizes systems for enhanced effi-
ciency, evident in applications like freight consolidation, carbon
market design, and reduction of food waste [37]. Its ability to ac-
celerate computationally intense physical simulations, like climate
and energy scheduling models, is invaluable. The integration of
ML in these areas not only addresses immediate environmental
concerns but also fosters long-term sustainability and resilience of
ecosystems, thus playing a crucial role in mitigating the impacts of
climate change. Figure 10 shows an increase of patents granted for
climate inventions, Al inventions and climate and Al between 1970
and 2020. This means we can directly link advancements in Al to
innovation in climate-related topics.

The integration of ML in climate change mitigation not only
benefits society but also propels advancements in ML itself, partic-
ularly in areas such as interpretability, causality, and uncertainty
quantification. However, the challenge lies in the nature of climate-
relevant data, which is often proprietary, sensitive, or not globally
representative. Solutions like transfer learning and domain adapta-
tion become crucial in addressing these data challenges. We aim to
emphasize the significant potential that advancing state-of-the-art

ML, utilizing real-world data and simulation environments, can
go hand in hand with developing effective solutions for current
pressing challenges.

A.3 Natural Societies and Multi-Agent Research

In MARL environments, groups of agents with baseline intelli-
gence and ability can have a higher collective intelligence by acting
together [14]. A shared pool of information through a collective
observation space can help individual agents to learn quicker. Ad-
ditionally, as a group, they can achieve objectives that would be
challenging to attain individually [20, 29, 46, 53]. However, acting
as a collective requires collaboration. From the perspective of an in-
dividual agent, other agents in the collective and the consequences
of their actions, i.e. change of the environment, can be seen as part
of a dynamic environment [60]. Perceiving others’ actions and mak-
ing sense of their intention is called intention reading, stated in the
theory-of-mind (ToM) [33]. While this is an integral part of human
collaborative activities, we will assume shared intentionality [70].

In our quest to advance multi-agent systems and cooperative
strategies, the study of animal societies like ants and meerkats
offers invaluable lessons. These natural societies, characterized
by intricate cooperation and complex social structures, provide a
blueprint for understanding and designing efficient, self-organizing
systems in human contexts.

Ants and Cooperative Robots: Researchers at Harvard Univer-
sity explored how ants cooperate to solve complex problems like
transporting and building things using simple rules. They studied
black carpenter ants and created a simulation to model their coop-
erative behaviour. This model was then used to develop robot ants
(RAnts) that demonstrated similar cooperative behaviours to real
ants, highlighting the potential for applying natural cooperation
strategies in robotics [58]. Recent work of ours explores distributed
robotics for building architectural structures ANONYMIZED, in
which robotics help each other to climb, add and remove bespoke
building blocks for a dynamically changing spatial configuration.

Ant Colonies and Social Evolution: Certain ant species, which
do not have a leader, can exhibit complex behaviours like the divi-
sion of labour through self-organization. This challenges the notion
that strong groups require strong leaders and suggests that even
in the simplest groups, significant collaboration can occur. This
research has implications for understanding the evolution of so-
cial behaviour and the early stages of complex society formation
(26, 27].

Meerkats and Cooperation: Meerkats have been studied to
understand the role of testosterone in female competition and co-
operative breeding. High testosterone levels in matriarch meerkats
play a key role in their success and aggression, influencing the
cooperative structure of the group. This study reveals that coopera-
tion can also arise through aggressive means, shedding light on a
new mechanism for the evolution of cooperative breeding [13, 47].

Meerkat Society Study: The Kalahari Meerkat Project, led
by Professor Tim Clutton-Brock, provides extensive insights into
meerkat societies. The project has tracked over 3,000 meerkats,
examining their life histories and the effects of climate change on



their survival and development. This long-term study offers valu- A.4.1  Pseudocode. PPO-CLIP pseudocode [51, 65]:
able data on cooperative breeding, kinship, and the resilience of
meerkat groups in challenging environments [40, 48]. Algorithm 1

In the context of nature, Charles Darwin argues for the survival
of the fittest [18] and, therefore, the occurrence of competition.
While in AL the majority of significant work on MA systems con-
sider two opposing agents only, the problems of interest of this work
are cooperative MA systems, where groups of agents act together
to achieve higher individual and collective goals [14, 20, 29, 46, 53].
Just like in human society or the animal world, individuals have
unique or mixtures of motives. However, we can define agents with
mixed or identical motives in an MA environment simulation. As-
suming shared intentionality leaves us with the question of how to
collaborate. Communication can play a crucial role in collaborating

Input: initial policy parameters o, initial value function parame-
ters ¢o
fork=0,1,2,...do

Collect set of trajectories Dy = {r;} by running policy my =
7(0)) in the environment.

Compute rewards-to-go R}.

Compute advantage estimates, A, (using any method of ad-
vantage estimation) based on the

current value function V5,

Update the policy by maximizing the PPO-Clip objective:

) o _ 1 T . mo(arlst) 4mo 1)
successfully. Human society uses language as a communication Ok1 = argmeX To,IT 2re Dy = Min (m,k(u,m)A k (st,ar), g(e, A% (s
medium [3]. Agents can send signals of various types as a form of typically via stochastic gradient ascent with Adam.
language. Nevertheless, observing others’ behaviour can be a form Fit value function by regression on mean-squared error:

of communication. Body language, a tail-wagging dog, or the red
colour of an octopus can communicate internal states and inten-
tions. But we can also design agents that directly share policies - typically via some gradient descent algorithm.

state action transitions - or memory data of past experiences. end for

Prs1 = argménw e 2l ((V¢ (s¢) = 1@)

Simple Multi-Agent PPO pseudocode:
A.4 Learning Algorithm

Addressing the intricacies and challenges in multi-agent systems Algorithm 2
that operate in dynamic and complex environments requires a for iteration =1,2,... do
sophisticated blend of algorithms and methodologies. Our approach for actor =1,2,...,N do
employs Proximal Policy Optimization (PPO) [65] with parameter Run policy 7g,, , in environment for T time steps
sharing for MA training 2. Compute advantage estimates Aq,... Ar
At the heart of our model is the policy 0, represented by a neural end for
network with parameters that process the observations from the Optimize surrogate L wrt. 6, with K epochs and minibatch
environment, factoring in past states and producing actions as size M < NT
outputs. Within the context of the HIVEX suite, PPO offers a stable Opq — 0
reinforcement learning algorithm, ensuring that agents iteratively end for

refine their strategies without drastic deviations. This is crucial
given the suite’s dynamic environmental events, from wildfires
to ocean cleanups. PPO is an advanced reinforcement learning
algorithm that seeks to improve policy-based learning by ensuring
that the updated policy does not deviate too drastically from the
previous policy. This is achieved by adding a constraint or penalty
to the objective function to restrict extreme policy updates 1.
Proximal Policy Optimization: Two main concepts define
the PPO [65], a state-of-the-art, on-policy RL algorithm: 1. PPO
performs the largest possible but safe gradient ascent learning step
by estimating a trust region and 2. Advantage estimates how good
an action in a specific state is compared to the average action.
A trust region can be calculated as the quotient of the current
policy to be refined my(a;|s;) and the previous policy as follows

re(6) = mo(acls;) _ current pf)licy
oy, (at|st) old policy
between the Q and the Value Function: A(s,a) = Q(s,a) — V(s),
where s is the state and a the action [78]. The Q function measures
the overall expected reward given state s, performing action a, and
denoted as: Q(s,a) = E [ZQI:O Vel rn]. The Value Function, similar
to the Q Function, measures overall expected reward, with the
difference that the State Value is calculated after the action has

been taken and is denoted as: V(s) = E [ZQI:O yY"rn].

. The advantage is the difference



A.5 Hyperparameters
A.5.1 Hyperparameter Description.

Hyperparameter Typical Range Description

Gamma 0.8 —0.995 discount factor for future rewards

Lambda 0.9 -0.95 used when calculating the Generalized Ad-
vantage Estimate (GAE)

Buffer Size 2048 — 409600 how many experiences should be collected
before updating the model

Batch Size 512 —5120 (continuous), 32 — 512 (discrete) number of experiences used for one itera-
tion of a gradient descent update.

Number of Epochs 3-10 number of passes through the experience
buffer during gradient descent

Learning Rate le—5—-1e—3 strength of each gradient descent update
step

Time Horizon 32 — 2048 number of steps of experience to collect
per-agent before adding it to the experi-
ence buffer

Max Steps 5e5 — le7 number of steps of the simulation (multi-
plied by frame-skip) during the training
process

Beta le—4—-1e—-2 strength of the entropy regularization,
which makes the policy "more random"

Epsilon 0.1-0.3 acceptable threshold of divergence be-
tween the old and new policies during gra-
dient descent updating

Normalize true/ false weather normalization is applied to the
vector observation inputs

Number of Layers 1-3 number of hidden layers present after the
observation input

Hidden Units 32 - 512 number of units in each fully connected
layer of the neural network

Intrinsic Curiosity Module

Curiosity Encoding Size 64 — 256 size of hidden layer used to encode the
observations within the intrinsic curiosity
module

Curiosity Strength 0.1 —0.001 magnitude of the intrinsic reward gener-

ated by the intrinsic curiosity module

Table 6: Hyperparameters Description: https://github.com/
Unity-Technologies/ml-agents/blob/main/docs/Training-

Configuration-File.md
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A.5.2  Train and Test Hyperparameters: Wind Farm Control.

behaviors:
Agent:
trainer_type: ppo
hyperparameters:

batch_size: 256
buffer_size: 2048
learning_rate: 0.0003 # testing: 0.0

beta: 0.005
epsilon: 0.2
lambd: ©.95

num_epoch: 3
learning_rate_schedule: linear # testing: constant
network_settings:

normalize: false

hidden_units: 64

num_layers: 2
reward_signals:

extrinsic:

gamma: 0.9

strength: 1.0
keep_checkpoints: 5
max_steps: 8000000 # testing: 8000000
time_horizon: 2048
summary_freq: 40000 # testing: 40000
threaded: true

engine_settings:
no_graphics: true

env_settings:
env_path: /dev_environments/Hivex_WindFarmControl_win
seed: 5000 # testing: 6000

environment_parameters:
# Pattern: @ Default, 1 Grid, 2 Chain, 3 Circle, 4 Square, 5 Cross,
# 6 Two_Rows, 7 Field, 8 Random
pattern: [0, 1, 2, 3, 4, 5, 6, 7, 8]
task: [0, 1] # Generate Energy: @, Avoid Damage: 1



A.5.3  Train and Test Hyperparameters: Wildfire Resource Manage-
ment.

behaviors:
Agent:
trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 2048
learning_rate: 0.0003 # testing: 0.0

beta: 0.01
epsilon: 0.2
lambd: ©.95

num_epoch: 3
learning_rate_schedule: linear # testing: constant
network_settings:

normalize: false

hidden_units: 512

num_layers: 2

vis_encode_type: simple
reward_signals:

extrinsic:

gamma: 0.99

strength: 1.0

curiosity:

gamma: 0.99

strength: 0.02

encoding_size: 256

learning_rate: 0.0003 # testing: 0.0
keep_checkpoints: 5
max_steps: 4500000 # testing: 450000
time_horizon: 2048
summary_freq: 4500 # testing: 4500
threaded: true

engine_settings:
no_graphics: true

env_settings:
env_path: /dev_environments/Hivex_WildfireResourceManagement_win
seed: 5000 # testing: 6000

environment_parameters:
terrain_level: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
task: [@, 1, 2] # Main: @, Distribute All: 1, Keep All: 2



A.54 Training Hyperparameters: Drone-Based Reforestation.

behaviors:
Agent:
trainer_type: ppo
hyperparameters:

batch_size: 1024
buffer_size: 10240
learning_rate: 0.0003 # testing: 0.0

beta: 0.005
epsilon: 0.2
lambd: ©.95

num_epoch: 3
learning_rate_schedule: linear # testing: constant
network_settings:

normalize: false

hidden_units: 128

num_layers: 2

vis_encode_type: resnet
reward_signals:

extrinsic:

gamma: 0.99
strength: 0.9
network_settings:
vis_encode_type: resnet
curiosity:
gamma: 0.99
strength: 0.1
encoding_size: 256
learning_rate: 0.0003 # testing: 0.0
network_settings:
vis_encode_type: resnet
keep_checkpoints: 5
max_steps: 2000000 # testing: 2000000
time_horizon: 10240
summary_freq: 10000 # testing: 10000
threaded: true

engine_settings:
no_graphics: true

env_settings:
env_path: /dev_environments/Hivex_DroneBasedReforestation_win
seed: 5000 # testing: 6000

environment_parameters:
terrain_level: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
task: [0, 1, 2, 3, 4, 5, 6, 7]
# Main: @, Find Closest Tree: 1, Group Up: 2, Pick Up Seed: 3,
# Drop Seed: 4, Find High Potential Area: 5,
# Find High Terrain: 6, Explore Furthest: 7



A.5.5 Training Hyperparameters: Ocean Plastic Collection.

behaviors:
Agent:
trainer_type: ppo
hyperparameters:

batch_size: 1024
buffer_size: 10240
learning_rate: 0.0003 # testing: 0.0

beta: 0.005
epsilon: 0.2
lambd: ©.95

num_epoch: 3
learning_rate_schedule: linear # testing: constant
network_settings:

normalize: false

hidden_units: 128

num_layers: 2

vis_encode_type: resnet
reward_signals:

extrinsic:

gamma: 0.99
strength: 0.9
network_settings:
vis_encode_type: resnet
curiosity:
gamma: 0.99
strength: 0.1
encoding_size: 256
learning_rate: 0.0003 # testing: 0.0
network_settings:
vis_encode_type: resnet
keep_checkpoints: 5
max_steps: 3000000 # testing: 150000
time_horizon: 10240
summary_freq: 15000 # testing: 15000
threaded: true

engine_settings:
no_graphics: true

env_settings:
env_path: /dev_environments/Hivex_OceanPlasticCollection_win
seed: 5000 # testing: 6000

environment_parameters:
task: [0, 1, 2, 3]
# Main: @, Find High Pollution Area: 1,
# Group up: 2, Avoid Plastic: 3



A.5.6  Training Hyperparameters: Aerial Wildfire Suppression.

behaviors:
Agent:
trainer_type: ppo
hyperparameters:

batch_size: 256
buffer_size: 4096
learning_rate: 0.0003

beta: 0.005
epsilon: 0.2
lambd: ©.95

num_epoch: 3
learning_rate_schedule: linear
network_settings:
normalize: false
hidden_units: 256
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.995
strength: 1.0
keep_checkpoints: 5
max_steps: 1800000 # testing: 180000
time_horizon: 4096
summary_freq: 9000 # testing: 9000
threaded: true

engine_settings:
no_graphics: true

env_settings:
env_path: /dev_environments/Hivex_AerialWildfireSuppression_win
num_envs: 12
seed: 5000 # testing: 6000

environment_parameters:
terrain_level: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
task: [0, 1, 2, 3, 4, 5, 6, 7, 8]
# Main Task: @, Maximize Extinguishing Trees: 1,
# Maximize Preparing Trees: 2, Minimze Time of Fire Burning: 3,
# Protect Village: 4, Pick Up Water: 5, Drop Water: 6,
# Find Fire: 7, Find Village: 8



A.6 Additional Environment Features and
Process Diagrams
A.6.1 Wind Farm Control.

Wind Farm Control Environment

Wind Farm Control " i (4) Main Wind diféction

(5) Local Wind Direction
K - -
(6) Rotation in Degree

f—

1) Wind Turbine Agent

(7) Arrow Indicator
(8) Light Indicator

+0.0-1.0 reward
90.0-0.0 degree,

Wind Farm Control Main Wind Direction Wind Noise Field Wind Turbine Agent
Environment

Figure 11: Wind Farm Control - Main environment features:
Main wind direction, wind noise field sample, agent con-
trolled wind turbine.

Wind Farm Control

Environment
8 Agents

Observations  Agent Actions Wind Turbine

Movement:
left, ight
F—  »

Turbine Position [x,y),
Turbine Direction [x,yl,
Wind Direction [x,y]

Reward

Generate Energy

Figure 12: Wind Farm Control Process Diagram: The default
layout of the WFC environment consists of eight wind tur-
bines. Each turbine receives six vector inputs: its position (x,
y), its orientation (x, y), and the local wind direction (x, y).
The agent controlling each turbine has three discrete actions:
do nothing, turn left, or turn right. The primary reward is
based on the amount of wind energy generated when the
turbine is optimally aligned with the wind direction.



A.6.2  Wildfire Resource Management.

Wildfire Resource Management Environment

Overcast Temperature Humidity

Figure 13: Wildfire Resource Management - Main environ-
ment features: Wind field sample, overcast field sample, tem-
perature field sample, humidity field sample, growing wild-
fire.

(4) Nearest Neighbours

Wildfire

Wildfire Resource Management Actions Neighbourhood Watch Tower

Environment Count=3
9 Agents

Agent (PPO)

Send Support /

Send Support / Request
Support Back

)

Collective Reward

Observations

Closest observed fire location:  cofy(x, y,2) [-600 - 600]
Local temperature: tempo  [0-42]
Local humidity: humg  [0-100]
Local overcast: oGy (0-100]
Support: supo  [0-1]

Figure 14: Wildfire Resource Management Process Diagram:
The WRM environment consists of nine agents, each man-
aging one of nine watchtowers. Each agent observes three
environmental factors: temperature, humidity, and cloud
cover, as well as whether a fire has been detected within 600
meters and the current resource level of its watchtower. Each
watchtower starts with 1.0 resources, which can be allocated
in 0.1 increments to either the agent’s own tower or neigh-
boring towers. Agents receive maximum rewards when their
watchtower is well-resourced and a fire is approaching. For
each step where the fire approaches and the watchtower is
adequately prepared, the agent receives a high reward.

Individual Reward



A.6.3  Drone-Based Reforestation.

Drone-Based Reforestation Environment

Multi-Agent Drone Refdrestation ‘ . (3) Optimal Referestation Area

Ed
4 25m - 15m (distance)

e "

(4) Drone Agent

Drone-Based Reforestation Terrain Forest Optimal Reforestation Area Height Map
Environment

Figure 15: Drone-Based Reforestation - Main environment
features: Terrain sample, forest sample, non-visible to agent
optimal reforestation area, non-visible to agent height map.

Ocean Plastic Collection Observations

Environment
3 Agents

Vector Observation .

Distance to ground [float], ‘e
Position [x,y,2],
Spawn height [float],
Carrying seed [booll,
Battery level [0.0-1.0]

Visual Observation
Camera pointing down

Observations

Visual Observation | 1 | .
Actions
Movement:
forward, backward
up, down
N rotate left, right
Visual Observation | 2 | Drop seed
Nt sSave optimal positon
Reward
Dropping seed

Figure 16: Drone-Based Reforestation Process Diagram: The
default DBR environment features three agents, each control-
ling a drone. Each agent’s observations include a vector with
data such as the drone’s distance to the ground, position (x, y,
z), spawn height, whether it’s carrying a seed, battery levels,
and terrain, forest, and height maps. Additionally, agents
receive a 32x32 grayscale visual observation. Agents can per-
form actions such as moving forward, backward, up, down,
rotating left or right, saving optimal positions, and dropping
a seed if carrying one. Rewards are given for successful seed
drops, with bonuses for drops in highly fertile areas.



A.6.4 Ocean Plastic Collection.

Ocean Plastic Collection Environment
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Figure 17: Ocean Plastic Collection - The main environment
features an Agent-controlled ocean plastic collection vessel,
trash field sample, nearest neighbours, and trash population

map.
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Figure 18: Ocean Plastic Collection Process Diagram: The de-
fault OPC environment includes three agents, each control-
ling a plastic collection vessel. Agents receive a 25x25 visual
grid, where each cell represents 2 meters, along with vector
observations such as their position (x, y), forward direction
(%, y), and the position of the nearest agent (x, y). Agents can
move forward, turn left, or turn right. Rewards are granted
for each plastic pebble successfully collected from the ocean.



A.6.5 Aerial Wildfire Suppression.

Aerial Wildfire Suppression Environment

Aerlal Wildfire Suppression
Envacament

(3) Village

Aerial Wildfire Suppression Wind Overcast Temperature Humidity
Environment

Figure 19: Aerial Wildfire Suppression Environment: (1) Wa-
ter Collection Area, (2) Agent-controlled Wildfire Suppres-
sion Aeroplanes, (3) Village. Environment Features: Wind
field sample, overcast field sample, temperature field sample,
humidity field sample..

Aerial Wildfire Suppression Observations

Environment
3 Agents
Vector Observation

Position [x,y),
Forward Vector [x,yl,
ClosestTree [x, ),
Closest Tree State (burning,
notBurning]

Visual Observation SN

Camera view pointing down
a2x42x1

Aeroplane

Actions
Movement:
left, right
Water:
drop

Vector Observation | 1 -

s Prepare / Extinguish Tree
RN Pick-Up Water
Visual Observation | 2

Figure 20: Aerial Wildfire Suppression Process Diagram: The
default AWS environment consists of three agents, each con-
trolling an airplane. Each agent receives both vector and
visual observations. The vector observations include posi-
tion (x, y), forward direction (x, y), the position of the nearest
tree (x, y), and the tree’s state: either [burning] or [not burn-
ing]. The visual observation is a 42x42 grayscale grid. Agents
can steer left, steer right, or release water. Rewards are given
for extinguishing burning trees, with smaller rewards for
preparing non-burning but alive trees. A small reward is also
granted for picking up water.



A.7 Environment Scenario Samples
A.7.1  Wind Farm Control.

Default Grid Chain Circle Square Cross Two Rows Field
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Pattern 8
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Figure 21: Wind Farm turbine layout patterns 0-7 [Default,
Grid, Chain, Circle, Square, Cross, Two Rows, Field] and var-
ious seeds for the layout pattern 8 [Random].



A.7.2 Wildfire Resource Management.
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Figure 22: Wildfire Resource Management environment sam-
ples showing terrain elevation levels 1-10, top to bottom, and
random seeds 0-7, left to right.



A.7.3  Drone-Based Reforestation.

Seed 23 Seed 24 Seed 25 Seed 26 Seed 27 Seed 28 Seed 29 Seed 30
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Figure 23: Drone-Based Reforestation environment samples
showing terrain elevation levels 1-10, top to bottom, and
random seeds 23-30, left to right.



A.7.4  Ocean Plastic Collection.
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Figure 24: Ocean Plastic Collection environment samples
seeds 0-19 with pollution heatmap and spawn positions for
agent-controlled vessels.




A.7.5 Aerial Wildfire Suppression.
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Figure 25: Aerial Wildfire Suppression environment samples
showing terrain elevation levels 1-10 , top to bottom, and
random seeds 0-7, left to right.



A.8 Reward Description and Calculation

A.8.1 Wind Farm Control. Reward Description

(1) Generate Energy - This is a positive reward given at each
time-step, in the range [0, 1]. This reward corresponds to the
performance of each wind turbine and is being calculated as
described in equation 4. Orienting the wind turbine against
the wind yields a high reward.

(2) Avoid Damage - This is a positive reward given at each
time-step, in the range [0, 1]. We remap the angle between
the wind direction and the turbine’s orientation linearly from
[0,90] degrees to [0, 1] reward and from [90, 180] degrees
to [1,0] reward. Orienting the wind turbine so that the rotor
blades are parallel to the wind direction yields high reward.

Reward Calculation
1. Generate Energy - First, we need to describe how perfor-
mance is calculated for each wind turbine:
Let us define:
® Giurbine = 0.1 — Acceleration of the turbine motor.
o O — The angle between the wind turbine orientation and the
wind direction at the turbine.
e P(0) = 0.0 — Performance, initialized as 0.0, dependent on
angle 0.
e W(0) — Wind force at wind turbine, dependent on angle 6.
e d — Wind turbine drag.
Calculation steps:
(1) Calculation of wind force W based on angle 6:

0 if 0 < 0.5
w(o) = . (1)
Map(6,0.5,1,0,1) if05<6<1

The "Map" function linearly interpolates the value of force
from 0 to 1 as angle increases from 0.5 to 1.
(2) Calculation of drag:

d=-0.1xP(0) 2)
(3) Updating performance P with drag and wind force:
P(0) = P(0) +d + W(0) X aturbine (3)

(4) Clamping performance P(6) between 0 and 1 is the reward
R(6):
R(0) = max(0, min(1, P(0))) (4)

Here, max(0, min(1, P(0))) limits P(#) within the interval
[0, 1], ensuring it neither falls below 0 nor exceeds 1.
2. Avoid Damage The avoid damage reward R(6) can be calcu-
lated as follows:
Let us define:
o O — The angle between the wind turbine orientation and the
wind direction at the turbine.
Calculation steps:
(1) Calculation of avoid damage reward based on angle 0:
sz{% if0 <6 <9 )

2- & if90 <6 <180

A.8.2  Wildfire Resource Management. Reward Description

(1) Watch Tower Performance - This is a positive reward
given at each time step, corresponding to the performance
of the agent-controlled watch tower only. This reward is
weighted by the resources distributed by self to self. Equation
9 describes how the individual performance and reward are
calculated.

(2) Neighbour Performance - This is a positive reward given
at each time step, corresponding to the sum of the perfor-
mance of the neighbouring agent-controlled watch towers.
This reward is weighted by the resources distributed by
self to neighbouring watch towers. Equation 10 describes
how the neighbour performance and reward are calculated.
Agents receive additional rewards if they distribute useful
resources to neighbouring watch towers.

(3) Collective Performance - This is a positive reward given at
each time step, corresponding to the sum of the performance
of all agent-controlled watch towers. Equation 12 describes
how the collective performance and reward are calculated.

Reward Calculation
1. Watch Tower Performance - First, we need to calculate the
performance of each watch tower agent. Let us define:
® dihresh = 200 — Threshold distance to a fire, used for normal-
ization.
e Xo and ¥; — 3D vector positions of the closest observed fire
at timesteps 0 and 1, respectively.
e C(X) — Function calculating the distance from the current
watch tower to the closest observed fire at position X.
e dy = C(Xp) and dy = C(¥X1) — Distances to the closest fire at
timesteps 0 and 1.

® dinormalized — Normalized distance at timestep 1: dy,0rmalized =
1
dihresh * . . .
e m — Indicates whether the fire is moving towards the tower:

m = (C(%1) < C(Xo)).
e s =270 and a = 5 — Constants for the broken power law.
Calculation steps:
(1) The remapped distance factor based on the direction of move-
ment is given by:

& _ 0.5 = 0.5 X dipormalized ifm (6)
Inormalized 0.5+ 0.5 X dipormalizea if notm

(2) The adjusted distance factor using the broken power law is:

1000\ “\ 2
’7 _ ’
dlnormalized - (1 + (dlnarmalized x s ) ) (7)
(3) This is the watch tower performance metric p:
g
p= dlnormalized (8)

Now, we can calculate the reward R(p, Tgistributeds "supporting) bY
defining:
® rdistributed — Total supporting resources distributed from self
and others.
® T'supporting — The amount of supporting resources from self
only.



e P — Performance metric calculated as outlined above.
Calculation steps:

R(p, rdistributed: supporting) =Px T'supporting X "'supporting 9

2. Neighbour Performance Reward: We now describe how
the neighbour reward is calculated.
Let us define the following:
o p; — Represents the performance metric for the i-th watch
tower.
e n — The number of neighbouring watch towers is 3.
® Rneighbourhood — The neighbour reward across neighbouring
watch towers n € N.
The neighbour performance reward R(n, p;) calculation involves
the following steps:

(1) Sum over neighbouring watch towers individual performance:

n
Rneighbourhood(n’Pi) = Z pi (10)
i=1
3. Collective Performance Reward: We now describe how the
collective reward is calculated.
Let us define the following:
e p; — Represents the performance metric for the i-th watch
tower.
o n — The total number of watch towers.
® Reollective — The collective reward across all watch towers
n € N.
The collective performance reward Rejective calculation involves
the following steps:
(1) Compute the Mean Squared Error MSE(n, p;) of watch tower
performances:

1 n
MSE(n.pi) = — > p} (1
i=1

(2) Calculate the collective reward:
Reollective (1 pi) = 1= |1 = VMSE(n,py)| (12

A.8.3  Ocean Plastic Collection. Reward Description

(1) Collect Trash - This is a positive reward of 1 given for each
floating plastic pebble collected.

(2) Lowest Collected Trash Count - This is a positive reward
given at each time step for the lowest collected trash count
amongst all agents. The lowest trash count is scaled by 0.01.
The steps to calculate the lowest collected trash count reward
can be found in Equation 15.

(3) Crossed Border - This is a negative reward of —100 given
when the border is crossed.

(4) Collided with Other Vessel - This is a negative reward of
—100 given when colliding with other vessel.

(5) Close to Other Vessel - This is a positive reward of 1 given
at each time step when the distance to the other vessel is
smaller than or equal to 10. The steps to calculate the close
to other vessel reward can be found in Equation 18.

(6) Nearby Trash Count Delta - This is a positive reward
given when the nearby trash field population is higher than
it has been until this time step. The reward given is the delta
between the previous nearby trash field population count

and the current. A nearby trash field population count is
calculated by finding all floating plastic pebbles around a
vessel with a radius smaller than or equal to 25. The steps to
calculate the nearby trash count delta reward can be found
in Equation 21.

(7) Collide with Trash - This is a negative reward of —1 given
when the agent-controlled vessel is colliding with a floating
plastic pebble.

Reward Calculation
1. Collect Trash - To calculate the Collect Trash reward, let us
define the following:
e r; — Reward for each trash pebble collected.
Calculation steps:
(1) Get the number of collected trash pebbles:

N
re = Z I(p; is collected) (13)
i=1
2. Lowest Collected Trash Count - To calculate the lowest
collected trash count reward, let us define the following:
e a =0.01 — Lowest trash count factor.
o T — Set of all agents lowest collected trash count.
Calculation steps:
(1) Get the lowest trash count from all agents:

M(T) = min(ty, t2,...,tn), wheret € T (14)
(2) Calculate the lowest collected trash count reward R(T):
R(T)=M(T) Xa (15)

3. Crossed Border - To calculate the Crossed Border reward,
let us define the following:
e ¢h = 200 — The environment half extend.
e 5 — The vessel position.
o r., — Crossed boundary reward.
Calculation steps:
(1) We can now calculate the Crossed Border reward:

{—100 if (px > ehor px < —ehor py > ehor p, < —eh)
Teb = .
0 otherwise
(16)
4. Collided with Other Vessel - To calculate the Collided with
Other Vessel reward, let us define the following:
e p — The vessel position.
e N;, — Neighbouring vessel positions.
e r. — Collision reward.
Calculation steps:
(1) We can now calculate the Collided with Other Vessel reward:

(17)

—100 if 37 € Np such that p collides with 7
r =
¢ 0 otherwise

5. Close to Other Vessel - To calculate the lowest collected
trash count reward, let us define the following:
o d — Distance to closest neighbouring vessel.
® dihresh — Distance threshold to closest neighbouring vessel.
Calculation steps:



(1) Calculate close to other vessel reward r.

L {10 if d < dipyresh 15)

0  otherwise
6. Nearby Trash Count Delta - To calculate the nearby trash

count delta reward, let us define the following:

® dihreshold = 25 — Trash count nearby distance threshold.
P — All floating plastic pebble positions, {p1, p2, ..., pn} € P.
ntcoglg = 0 — Old nearby trash count.
ntceurrent — Current nearby trash count.
ntcgifference — Difference between the old and current nearby
trash count.
Calculation steps:
(1) The nearby trash count is calculated by considering only

floating plastic pebbles with a distance below dipyeshold:

n

ntCeurrent = Z[diSt(Pi) < dthreshold] (19)
i=1

(2) If the current nearby trash count ntccyrrent is larger than the
old nearby trash count ntcy4, the difference between the
two is the reward r(ntcgigerence):

ntCdifference = NtCcurrent — NECold (20)

r(ntcdifference) = max(0, ntcdiﬂerence) (21)

(3) Finally the old nearby trash count ntc,)q is updated with the
current nearby trash count ntccyrrent:

ntcold = NtCeurrent (22)

7. Collide with Trash - To calculate the Collide with Trash
reward, let us define the following:
e p — The vessel position.
e P; — All trash pebble positions.
e rp — Collision reward.
Calculation steps:
(1) We can now calculate the Collide with Trash reward:

(23)

—100 if 37 € Py such that p collides with py
r =
¢ 0 otherwise

A.8.4 Drone-Based Reforestation. Reward Description

(1) Drop Seed - This is a positive reward given at each seed
drop. The drop seed reward consists of the quality of the
drop location, a seed reward, in the range of [0, 20] and
distance to other seeds and existing trees, a distance reward,
in the range of [0, 10]. Therefore, the resulting total drop
seed reward is in the range of [0, 30]. The steps to calculate
the total drop seed reward can be found in Equation 32.

(2) Deplete Energy Holding Seed - This is a negative reward
of —1/(episode length/2) given at each time step if the drone
is carrying a seed. The deplete energy reward at each time
step is higher when carrying a seed than if not carrying a
seed. The episode length is 2000.

(3) Deplete Energy No Seed - This is a negative reward of
—1/(episode length) given at each time step if the drone is
not carrying a seed. The episode length is 2000.

(4) Pick-up Seed - This is an optional positive reward given
when a drone is returned to the drone station. There are
two tasks in which this reward is given. In "Subtask: Pick-
up Seed at Base" a reward of 100 is given and in "Subtask:
Explore Furthest Distance and Return to Base" the reward is
the furthest distance that has been explored and can be in
the range of [0, 200].

(5) Incremental Running Back - After a seed has been dropped,
this reward is given incrementally when flying back to the
drone station. If the distance to the drone station at time-step
t_1 is larger than the current distance, this reward is given
at incremental steps of 2.5. The range of the incremental
running back reward is [0, 20], which can be modified by
the running back multiplier, depending on the seed drop
quality. If the Seed has been dropped 50 meters away from
the drone station, an incremental running back reward can
be received 20 times. The steps to calculate the incremental
running back reward can be found in Equation 40.

(6) Group-up - This is a positive reward of 10, given at each

time-step, if the distance to any neighbouring drone is smaller

than 5. The steps to calculate the group-up reward can be

found in Equation 42.

High Fertility Location Delta - This is a reward given

every time a higher fertility potential seed drop location has

been found. The reward is the delta between the old and the
new potential, if the new potential is higher than the old.

The range of the reward is [0, 1]. The steps to calculate the

high fertility location delta reward can be found in Equation

44.

(8) High Landscape Point Delta - This is a reward given every
time a higher point on the terrain landscape has been found.
The reward is the delta between the old and the new height,
if the new height is higher than the old. The reward range
is [0,40], as 40 is the environment’s height boundary. The
steps to calculate the high landscape point delta reward can
be found in Equation 46.

(9) Far Distance Explored Delta - This is a reward given ev-
ery time a further distance has been explored. The reward is
the delta between the old distance and the new, if the new
distance is further than the old. The reward range is [0, 200],
as 200 is the environment’s half extend. The steps to calcu-
late the far distance explored delta reward can be found in
Equation 48.

(10) Find Close Tree - This is a reward given when a tree has

been found within a 20 meter radius. The reward given is
100. The steps to calculate the find close tree reward can be
found in Equation 24.

—
~
~

Reward Calculation
1. Drop Seed - To calculate the drop seed reward, we need to
calculate the actual seed drop reward and a distance reward. To
calculate the seed drop reward, let us define the following:
e dotpax = 75 — Maximum distance to other trees.

® dotyin = 2.5 — Minimum distance to other trees.
e dnt — Closest distance to new trees.



o det — Closest distance to existing trees.
e sdrm = 20 — Seed drop reward multiplier.
o rs(det, dotyin, dotmax) — Seed drop reward.

Calculation steps:

(1) The following condition needs to hold true for this reward to
be larger than 0. This ensures that the newly dropped seed
is far enough from existing and seeds dropped in the past,
but also that the seed is not too far away from the existing
forest.

(dotmin < det < dotmax) and (dnt > dotyin) (24)

(2) First, we remap the distance to existing and new trees to
[1,0] so that a high reward is given when the seed is dropped
close to existing or new trees.

rs(det, dotyin, dotmax) = Remap(det, dotyin, dotmax, 1,0)  (25)
(3) Applying Multiplier:
rs(det, dotmin, dotmax) = rs(det, dotmin, dotmax) X sdrm  (26)

We now describe how the distance reward is calculated. Let us
define:
e sdd — Seed drop distance to drone station.
e ew = 200 — Environment half extend.
e drm = 10 — Distance reward multiplier.
o 1 (sddnormalizeds drm) — Distance reward.
Calculation steps:
(1) The seed drop reward needs to be larger than 0 for the dis-
tance reward to be applied.

0 < rg(det, dotmin, dotmax) (27)

(2) Calculate the distance reward using the normalized seed
drop distance to the drone station.

sddyormalized = Sdd/ew (28)

rd(denormalizeds drm) = denormalized X drm (29)

The total reward for dropping a seed consists of the drop seed
reward 24 and the distance reward 27.
e r; — Seed drop reward, calculated as described above.
e ry — Distance reward, calculated as described above.
® ryq(rs,rq) — The total seed drop reward.

rsa(rs,rq) =rs+rg (30)
2. Deplete Energy Holding Seed - To calculate the deplete
energy holding seed reward, let us define the following:
e episode length . = 2000 — Max episode length.
e derpolding seed (episode length — Deplete energy reward
while holding a seed.

max )

derholding seed (€pisode length,; . ) = —1/(episode length,,, /2)
(31)
3. Deplete Energy No Seed - To calculate the deplete energy
no seed reward, let us define the following:
e episode length . = 2000 — Max episode length.
o dery, seed (episode length, .. ) — Deplete energy reward with-
out holding a seed.

max

deryo seed (€pisode length = —1/(episode length (32)

max) max)

4. Pick-up Seed - To calculate the Pick-up Seed reward, let us
define the following:
e p — Drone position.
e d — Drone station position.
e rps — Pick-up seed reward.
Calculation steps:
(1) We can now calculate the Pick-up Seed reward:
ps = {1 if dlstar.lce(p, d)=0 (33)
0 otherwise

5. Incremental Running Back - To calculate the incremental
running back reward we need to calculate the seed drop reward 24
and distance reward 27. Let us define the following:
e dy — Current distance to drone station at time-step 0 in
incremental steps.

e po — Current position at time-step 0.

d}) — Drone station position.

s = 2.5 — Incremental step size towards drone station.

rs — Seed drop reward, calculated as described above.

rq — Distance reward, calculated as described above.

rp = 20 — Possible intermediate reward for running back to

the drone station.

sdrm = 20 — Seed drop reward multiplier.

drm = 10 — Distance reward multiplier.

rbm — Running back multiplier.

rsd(rs,rg) — The total seed drop reward.

-5 — Reward for running back, given incrementally at step

s sized increments.

® dinit — Initial distance to drone station, this is assigned when
a seed has been dropped.
® deharge = 7.5 — Distance to drone station to charge and

pick-up seed.

Calculation steps:

(1) The condition for the reward to be given is that the current
distance from the drone to the drone station is smaller than
in time-step t_1. The current distance dy is calculated as

follows:
n
do = Z(PO:’ —dpi)?/s (34)
i=1
If dy < d_1 continue with next step. (35)

(2) Let us first calculate the running back multiplier rbm by
normalizing the sum of seed drop and distance rewards.

rbm = (rs +rg)/(sdrm + drm) (36)

(3) We can now calculate the reward for running back to the
drone station:

rep = (rp X rbm)/(dinit — deharge/$) (37)



(4) Finally, we need to ensure that the reward r,}, is equal to or
above 0 and equal to or below ry:

0 ifr,, <0
rp=9rp ifrpp>rp (38)
r.p otherwise

6. Group-up - To calculate the group-up reward we need to
define the following:
ne — Closest neighbour.
dihresh = 5 — Distance threshold to closest drone.
p — Current local drone position.
den — Distance to closest neighbour
rqu — Reward for grouping up.
Calculation steps:
(1) Let us calculate the distance to the closest neighbour:

den = A\ ;(Pz - nci)2 (39)

(2) We can now calculate the reward for grouping up:

{0 if dihresh < den

Tou = (40)

10 otherwise
7. High Fertility Location Delta - To calculate the high fertility

location delta reward, let us define the following:

e dotmax = 75 — Maximum distance to other trees.

® dotyin = 2.5 — Minimum distance to other trees.

o dnt — Closest distance to new trees.

e det — Closest distance to existing trees.

e p — Current local drone position.
dcer — Distance to closest existing tree.

e d.;; — Distance to closest dropped seed.
e pot,q = 0 — Old potential seed drop fertility, initialized as 0.
® pot . rent — Current potential seed drop fertility.

rr1 — High fertility location delta reward.

Calculation steps:

(1) If det is smaller or equal to dotmax, det is larger or equal to
dotpmin and dnt is larger or equal to doty,y, then follow the
next calculation step, otherwise the reward ry; is 0.

(2) Calculate the current potential:

pot = Map(det, dotyin, dotmax, 1,0) (41)

current

(3) We can now calculate the high fertility location reward:

rei= {pOtcurrent —potgyg if potyg < Poteyrrent
0 otherwise
(42)
8. High Landscape Point Delta - To calculate the high land-
scape point delta reward, let us define the following:
e p — Current local drone position.
® hylg = 0 — Old height, initialized as 0.
® hcurrent — Current height.
e h(¥) — Get height at position X.
e r;, — Height delta reward.
Calculation steps:
(1) Calculate the current height:

hcurrent = h(ﬁ) (43)

(2) We can now calculate the hight landscape point delta reward:

{hcurrent —hoid  if hold < Acurrent, delta of current and old height
rfl =

0 otherwise
(44)
9. Far Distance Explored Delta - To calculate the far distance
explored delta reward, let us define the following:
e p — Current local drone position.
® dgjg = 0 — Old furthest distance to drone station, initialized
as 0.
® dcurrent — Current furthest distance to drone station.
e d(X) — Get distance to drone station at position X.
e rrq — Far distance delta reward.
Calculation steps:
(1) Calculate the current furthest distance:

P {d@ ifd(p) > doia
current = .
dolq  otherwise

(2) We can now calculate the far distance delta reward:

{dcurrent —dold  if dglg < deurrent, delta of current and old furthest distanc
rfd =

0 otherwise
(46)
10. Find Close Tree - To calculate the find close tree reward,
let us define the following:

e p — Current local drone position.

e ew = 200 — Environment half extend.

® dc.; — Distance to closest existing tree.

e cet(X) — Get closest existing tree given a location.

e r.; — Find close tree reward.
Calculation steps:
(1) Let us calculate the distance to the closest existing tree and

normalize using the environment half extend:

deer = Cet(ﬁ)/ew (47)
(2) If dcer < 20 a reward of 100 is given:

(48)

100 if dger < 20
Tet = .
0 otherwise

A.8.5 Aerial Wildfire Suppression. Reward Description
(1) Crossed Border - This is a negative reward of —100 given
when the border of the environment is crossed. The border

delta of current and old pot enl§:4 square around the island in the size of 1500 by 1500. The

island is 1200 by 1200.

(2) Pick-up Water - This is a positive reward of 1 given when
the agent steers the aeroplane towards the water. The island
is 1200 by 1200 and there is a girdle of water around the
island with a width of 300.

(3) Fire Out - This is a positive reward of 10 given when the
fire on the whole island dies out, with or without the active
assistance of the agent.

(4) Too Close to Village - This is a negative reward of —50
given when the fire is closer than 150 to the centre of the
village.

(5) Time Step Burning - This is a negative reward of —0.01
given at each time-step, while the fire is burning.



(6) Find Fire - This is a positive reward of 100 given when a
burning tree has been found.

(7) Find Village - This is a positive reward of 100 given when
the village has been found, and the distance between the
current local aeroplane position and the village is less than
150.

(8) Extinguishing Tree - This is a positive reward in the range
of [0, 5] given for each tree that has been in the state burning
in time-step ¢t_1 and is now extinguished by dropping water
at its location.

(9) Preparing Tree - This is a positive reward in the range
of [0, 1] given for each tree that has been in the state not
burning in time-step ¢t_; and is now wet by dropping water
at its location.

Reward Calculation
1. Crossed Border - To calculate the Crossed Border reward,
let us define the following:
e c¢h =750 — The environment half extend.
e p — The drone position.
o r., — Crossed boundary reward.
Calculation steps:
(1) We can now calculate the Crossed Border reward:

{—100 if (px > ehor px < —ehor py > eh or p, < —eh)
Feb = .
0 otherwise
(49)
2. Pick-up Water - To calculate the Pick-up Water reward, let
us define the following:
e ¢h =750 — The environment half extend.
e ih =600 — Island half extend.
e p — The drone position.
® rpw — Pick-up Water reward.
Calculation steps:
(1) We can now calculate the Pick-up Water reward:

1 if (px < ehorpy > —ehor py < ehor py > —eh)

Tpw = and (px > ih or px < —ih or py > ihor py < —ih)
0 otherwise
(50)
3. Fire Out - To calculate the Fire Out reward, let us define the
following:
o T — All tree states.
® r,p — No burning tree reward.
Calculation steps:
(1) We can now calculate the Fire Out reward:
{10 ifVt € T, t # "burning"
T'nb = . (51)
0  otherwise

4. Too Close to Village - To calculate the Too Close to Village
reward, let us define the following:
o T, — All tree states, closer to or equal to 150 to the village.
® rcy — Too Close to Village reward.
Calculation steps:

(1) We can now calculate the Fire Out reward:

—50 if 3t € T, t = "burning"
oo = { i ¢ urning (52)

0 otherwise

5. Time Step Burning - To calculate the Time Step Burning
reward, let us define the following:
o T — All tree states.
o 145 — Time Step Burning reward.
Calculation steps:
(1) We can now calculate the Time Step Burning reward:

—0.01 ifVt €T, t ="burning"
Ttsb = (53)

0 otherwise

6. Find Fire - To calculate the Find Fire reward, let us define the
following:
e p — The drone position.
e d; = 150 — Distance threshold.
o T — All tree states.
°ory— Find Fire reward.
Calculation steps:
(1) We can now calculate the Find Fire reward:

{100 if 3t € T such that distance(p) < d; meters and ¢ = "burning"
rf =

0 otherwise
(54)
7. Find Village - To calculate the Find Village reward, let us
define the following:
e p — The drone position.
e d; = 150 — Distance threshold.
e r, — Find Village reward.
Calculation steps:
(1) We can now calculate the Find Village reward:
{100 if distance(p) < d; meters
ry = ] (55)
0 otherwise

8. Extinguishing Tree - To calculate the Extinguish Tree re-
ward, let us define the following:
o T — All tree states.
e ro — Extinguish Tree reward.
Calculation steps:
(1) We can now calculate the Extinguish Tree reward:

re =5 Z I(tprevious = "burning" and teyrrent = "extinguished"”)

teT
(56)

9. Preparing Tree - To calculate the Preparing Tree reward, let
us define the following:
o T — All tree states.
e rp — Preparing Tree reward.
Calculation steps:
(1) We can now calculate the Preparing Tree reward:

Te = Z I(tprevious = "not Burning" and feurrent = "wet")  (57)
teT

A.9 Task Description and Reward Scale
A.9.1  Wind Farm Control. Task Description



(1) Main Task: Generate Energy - This is the main task of the

environment. The agent’s goal is to rotate the wind turbine
to be oriented against the wind direction and hence generate
energy.

(2) Subtask: Avoid Damage - This is a subtask to turn the

wind turbine 90 degrees away so that the wind turbine rotor
blades are parallel to the wind direction, avoiding damage
to the wind turbine’s rotor blades.

Reward Scale

Table 7: Main- and Sub-Task Reward Scale

Task
Reward 1. 2.
1. Generate Energy 1 0
2. Avoid Damage 0 1

A.9.2
1

@

®)

Wildfire Resource Management. Task Descriptions
Main Task: Distribute Resources - This is the main task of
the environment. The goal of the agent is to distribute a total
of 1.0 resources at each time step to self or neighbouring
watch towers. If the agent is out of resources, it has to remove
resources from self or neighbouring watch towers before
re-distribution. The resources should be distributed to the
watch towers where the fire is closest and incoming.
Subtask: Keep All - This is a subtask with the same goal
as the main task, however distributing resources to self
yields higher rewards than distributing them to neighbour-
ing watch towers.
Subtask: Distribute All - This is a subtask with the same
goal as the main task, however distributing resources to
neighbouring watch towers yields higher rewards than dis-
tributing them to self.

Reward Scale

Table 8: Main- and Sub-Task Reward Scale

Task
Reward 1. 2. 3.
1. Watch Tower Performance 1 10 1
2. Neighbourhood Performance 1 1 10
2. Collective Performance 1 1 1

A9.3
1)

Ocean Plastic Collection. Task Description

Main Task: Plastic Collection - This is the main task of
the environment. The goal for the agent is to accelerate and
steer the plastic collection vessel to collect as many floating

plastic pebbles as possible while avoiding crashing into other
vessels and crossing the environments border.

(2) Subtask: Find Highest Polluted Area - This is a subtask
with the goal of finding the highest trash population area in
a given scenario.

(3) Subtask: Group Up - This is a subtask with the goal of
finding other vessels and staying close to other vessels while
collecting as many floating plastic pebbles as possible.

(4) Subtask: Avoid Plastic - This is a subtask with the goal of
avoiding floating plastic pebbles.

Reward Scale

Table 9: Main- and Sub-Task Reward Scale

Task
Reward 1. 2. 3. 4.
1. Collect Trash 1 1 1 -1
2. Global Lowest Trash Collected 1 1 1 0
3. Crossed Border 1 1 1 1
4. Collided with Other Vessel 1 1 1 1
5. Close to Other Vessel 0 0 1 0
6. Nearby Trash Count Delta 0 1 0 0
7. Collide with Trash 0 0 0 1




A.9.4 Drone-Based Reforestation. Task Description

(1) Main Task: Maximize Collective Planted Tree Count -
This is the main task of the environment. The goal for the
agent is to pick up a seed and re-charge batteries at the drone
station, explore to find fertile ground for the seed, that is,
a location that is close to existing trees, and drop the seed
while maintaining enough battery charge to return to the
drone station.

(2) Subtask: Find Closest Forest Perimeter - This is a subtask
with the goal of finding the closest forest perimeter.

(3) Subtask: Pick-up Seed at Base - This is a subtask with
the goal of going back to the drone station, picking up a
seed, and recharging the battery. In this subtask, the initial
position of drones is random instead of at the drone station.

(4) Subtask: Drop Seed - This is a subtask with the goal of
finding the most fertile soil and dropping a seed.

(5) Subtask: Find Highest Potential Seed Drop Location -
This is a subtask with the goal of finding soil with the highest
fertility.

(6) Subtask: Find Highest Point on Landscape - This is a
subtask with the goal of finding the highest point on the
landscape.

(7) Subtask: Explore Furthest Distance and Return to Base
- This is a subtask with the goal of exploring the furthest
from the drone station and returning.

Reward Scale

Table 10: Main- and Sub-Task Reward Scale

Task
Reward 1. 2. 3. 4 5 6 7. 8
1. Drop Seed 10 0 01 0 0 O
2. Deplete Energy HoldingSeed 1 1 1 1 1 1 1 1
3. Deplete Energy No Seed 11 1 1 1 1 1 1
4. Pick-up Seed 1 0 1001 1 0 0 O-
200
5. Incremental Running Back 10 0 1.1 0 0 1
6. High Fertility LocationDelta 0 0 0 0 0 1 0 0
7. High Landscape PointDelta 0 0 0 0 0 0 1 0
8. Far Distance ExploredDelta 0 0 0 0 0 0 0 1
9. Find Close Tree 0100 0 0 0 0

A.9.5 Aerial Wildfire Suppression. Task Description

(1) Main Task: Minimize Time Fire Burning and Prevent
Fire From Moving Towards Village - This is the main task
of the environment. The goal for the agent is to pick up water
and extinguish as many burning trees as possible or prepare
a forest that is not yet burning. A secondary goal is to protect
the village from approaching fire by extinguishing burning
trees before they get too close to the village or redirecting
the fire by preparing trees.

(2) Subtask: Maximize Extinguished Burning Trees - This
is a subtask with the goal of extinguishing as many burning
trees as possible.

(3) Subtask: Maximize Preparing Non-Burning Trees - This
is a subtask with the goal of preparing as many non-burning
trees as possible.

(4) Subtask: Minimize Time Fire Burning - This is a subtask
with the goal of minimizing the time of trees burning.

(5) Subtask: Protect Village - This is a subtask with the goal
of protecting the village from approaching fire.

(6) Subtask: Pick Up water - This is a subtask with the goal
of picking up water.

(7) Subtask: Drop Water - This is a subtask with the goal of
dropping water anywhere.

(8) Subtask: Find Fire - This is a subtask with the goal of
finding a burning tree.

(9) Subtask: Find Village - This is a subtask with the goal of
finding the village.

Reward Scale

Table 11: Main- and Sub-Task Reward Scale

Task

Reward 1. 2. 3. 4 5 6 7. 8 9
1. Crossed Border 11 1 1 1 1 1 1 1
2. Pick-up Water 11 1 1 1 1001 0 0
3. Fire Out 11 1 1 1 0 0 0 O
4. TooClosetoVillage 1 1 1 1 10 0 0 0 O
5. Time StepBurning 0 0 0 1 0 0 0 0 0
6. Find Fire o 0o o0 o0 o o o0 1 O
7. Find Village o 0 o0 o0 o o 0 0 1
Drop Water

8. Extinguishing Tree 1 10 1 1 1 1 1 0 0
9. Preparing Tree 11 5 1 1 1 1 0 O




Figure 26: Wind Farm Control: Train & Test Metrics: Pattern
0, Task 0.

Figure 27: Wind Farm Control: Train & Test Metrics: Pattern
0, Task 1.

Figure 28: Wind Farm Control: Train & Test Metrics: Pattern
1, Task 0.

Figure 32: Wind Farm Control: Train & Test Metrics: Pattern
3, Task 0.

Figure 33:
3, Task 1.

4, Task 0.

Figure 35: Wind Farm Control: Train & Test Metrics: Pattern
4, Task 1.

Figure 29: Wind Farm Control: Train & Test Metrics: Pattern
1, Task 1.

Figure 30: Wind Farm Control: Train & Test Metrics: Pattern
2, Task 0.

Figure 31: Wind Farm Control: Train & Test Metrics: Pattern
2, Task 1.

Figure 36: Wind Farm Control: Train & Test Metrics: Pattern
5, Task 0.

Figure 37: Wind Farm Control: Train & Test Metrics: Pattern
5, Task 1.

Figure 38: Wind Farm Control: Train & Test Metrics: Pattern
6, Task 0.

Figure 39: Wind Farm Control: Train & Test Metrics: Pattern
6, Task 1.



Figure 40: Wind Farm Control: Train & Test Metrics: Pattern
7, Task 0.

Figure 41: Wind Farm Control: Train & Test Metrics: Pattern
7, Task 1.

Figure 42: Wind Farm Control: Train & Test Metrics: Pattern
8, Task 0.

Figure 43: Wind Farm Control: Train & Test Metrics: Pattern
8, Task 1.

A.11 Wind Farm Control: Average Test Results -
Task VS Pattern

Average Values for All Tags: WindFarmControl

Average Values for Tag: Policy/Entropy Average Values for Tag: Policy/Extrinsic Value Estimate

Average Values for Tag: Avoid Damage Reward

Figure 44: Wind Farm Control: Average Train & Test Metrics.



A. 12 Wildﬁre Resource Management: Train & Average Values for All Tags: WildfireResourceManagement
Test Results

Figure 45: Wildfire Resource Management: Train & Test Met-
rics: Terrain Elevation 5, Task 0.

Figure 48: Wildfire Resource Management: Average Train &

Figure 46: Wildfire Resource Management: Train & Test Met- Test Metrics.

rics: Terrain Elevation 5, Task 1.

Figure 47: Wildfire Resource Management: Train & Test Met-
rics: Terrain Elevation 5, Task 2.

A.13 Wildfire Resource Management: Average
Test Results - Task VS Terrain Elevation



A. 14 Oce an Plastic Colle ction: Train & Test Average Values for All Tags: OceanPlasticCollection
Results . : S—

Figure 53: Ocean Plastic Collection: Average Train & Test
Metrics.

Task 1.

Figure 51: Ocean Plastic Collection: Train & Test Metrics:
Task 2.

Figure 52: Ocean Plastic Collection: Train & Test Metrics:
Task 3.

A.15 Ocean Plastic Collection: Average Test
Results



A.16 Drone-Based Reforestation: Train & Test
Results

Figure 54: Drone-Based Reforestation: Train & Test Metrics:

Terrain Elevation 5, Task 0.

Figure 55: Drone-Based Reforestation: Train & Test Metrics:

Terrain Elevation 5, Task 1.

Figure 56: Drone-Based Reforestation: Train & Test Metrics:

Terrain Elevation 5, Task 2.

Figure 57: Drone-Based Reforestation: Train & Test Metrics:

Terrain Elevation 5, Task 3.

Figure 58: Drone-Based Reforestation: Train & Test Metrics:
Terrain Elevation 5, Task 4.

Figure 59: Drone-Based Reforestation: Train & Test Metrics:
Terrain Elevation 5, Task 5.

Figure 60: Drone-Based Reforestation: Train & Test Metrics:
Terrain Elevation 5, Task 6.



A.17 Drone-Based Reforestation: Average Test
Results - Task VS Terrain Elevation

Average Values for All Tags: DroneBasedReforestation
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Figure 61: Drone-Based Reforestation: Average Train & Test
Metrics.



A.18 Aerial Wildfire Suppression: Train & Test
Metrics

Figure 62: Aerial Wildfire Suppression: Train & Test Metrics:

Terrain Elevation 5, Task 0.

Figure 63: Aerial Wildfire Suppression: Train & Test Metrics:

Terrain Elevation 5, Task 1.

Figure 64: Aerial Wildfire Suppression: Train & Test Metrics:

Terrain Elevation 5, Task 2.

Figure 65: Aerial Wildfire Suppression: Train & Test Metrics:

Terrain Elevation 5, Task 3.

Figure 66: Aerial Wildfire Suppression: Train & Test Metrics:
Terrain Elevation 5, Task 4.

Figure 67: Aerial Wildfire Suppression: Train & Test Metrics:
Terrain Elevation 5, Task 5.

Figure 68: Aerial Wildfire Suppression: Train & Test Metrics:
Terrain Elevation 5, Task 6.

Figure 69: Aerial Wildfire Suppression: Train & Test Metrics:
Terrain Elevation 5, Task 7.

Figure 70: Aerial Wildfire Suppression: Train & Test Metrics:
Terrain Elevation 5, Task 8.



A.19 Aerial Wildfire Suppression: Average Test
Results - Task VS Terrain Elevation

Average Values for All Tags: AerialWildfireSuppression
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Figure 71: Aerial Wildfire Suppression: Average Train & Test

Metrics.
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