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ABSTRACT
Mobile health (mHealth) programs ([23], [10], [17]) utilize
automated voice messages to deliver health information, par-
ticularly targeting underserved communities, demonstrating
the effectiveness of using mobile technology to disseminate
crucial health information to these populations, improving
health outcomes through increased awareness and behavioral
change. India’s Kilkari program delivers vital maternal health
information via weekly voice calls to millions of mothers. How-
ever, the current random call scheduling often results inmissed
calls and reduced message delivery. This study presents a field
trial of a collaborative bandit algorithm designed to optimize
call timing by learning individual mothers’ preferred call times.
We deployed the algorithm with ∼ 8, 700 Kilkari participants
as a pilot study, comparing its performance to the baseline
random calling approach. Our results demonstrate a statisti-
cally significant improvement in call pickup rates with the
bandit algorithm, indicating its potential to enhance message
delivery and impact millions of mothers across India. This
research highlights the efficacy of personalized scheduling
in mobile health interventions and underscores the potential
of machine learning to improve maternal health outreach at
scale.
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1 INTRODUCTION
Maternal health remains a critical public health concern in
India, with millions of women with limited access to timely
and accurate information during pregnancy and postpartum.
Recognizing this need, the Government of India launched
the Kilkari program, a nationwide mobile health initiative
that delivers weekly voice messages that contain essential
maternal health information to more than 10million registered
mothers [5]. mHealth programs such as these play a vital role
in reducing maternal mortality rates - a key target within the
WHO’s Sustainable Development Goals [2]. These messages
cover vital topics such as iron and calcium supplementation,
antenatal care, and postnatal practices, aiming to improve
maternal health outcomes throughout the country.

However, the effectiveness of this large-scale program is
contingent upon successfulmessage delivery. Currently, Kilkari
employs a random call scheduling strategy, attempting to reach
mothers, with up to nine re-attempts (until the call is picked
up), but without considering individual preferences for call
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timing. This approach often results in missed calls, crucial
bandwidth spent on re-attempts andmost importantly limiting
the reach and impact of crucial health information [16, 18, 22].
To address this challenge, this paper presents a field trial of
the collaborative bandit algorithm [28] designed to optimize
call scheduling by learning mothers’ preferred call times.

Collaborative bandit algorithms offer a promising approach
for personalized intervention delivery in mobile health. By
iteratively learning from user responses and interactions, these
algorithms can adapt to individual preferences and maximize
engagement. In this study, we implemented a collaborative
bandit algorithm within the Kilkari platform and conducted
a field trial involving approximately 8, 700 mothers. Our goal
was to evaluate the algorithm’s ability to improve call pickup
rates compared to the baseline random calling strategy.

This research contributes to the growing body of literature
in the application of machine learning in mobile health inter-
ventions [21, 25, 31]. By demonstrating the effectiveness of
a collaborative bandit algorithm in a real-world setting, we
highlight the potential for personalized call scheduling to en-
hance the reach and impact of maternal health programs at
scale. Given the national scope of Kilkari and the potential
for improved message delivery to millions of mothers, our
findings have significant implications for public health policy
and practice in India and beyond.

Key note on the experiments reported in this paper: This work
was conducted as a joint effort between a research team from
ARMMAN [1], a non-profit organization in India, and Google
DeepMind, as reflected in the co-authorship of this paper. It is
crucial to highlight that the beneficiary data utilized in this re-
search is fully anonymized, and no socio-demographic features
were available to the research team. To ensure data privacy and
security, the experimental infrastructure was managed exclu-
sively by the ARMMAN team, who were the only individuals
with access to the raw beneficiary data. The collaborative ban-
dit algorithm, previously developed by Google researchers, was
implemented under their guidance by the ARMMAN team. The
Google researchers contributed by advising the ARMMAN team
on the algorithm’s implementation and subsequently collaborat-
ing on the analysis of the resulting study.

2 RELATEDWORK
mHealth programs provide essential health information though
automated voice messages to a large number of beneficiaries
[14, 24], which implies any improvement to the program posi-
tively affects a lot of mothers. Previously, AI has been applied
to schedule interventions [21, 31] and showed positive behav-
ioral outcomes [12]. LeFevre et al. [20] talk about the protocol
for an individually controlled randomized control trial in an
attempt to show the effectiveness of Kilkari.

Scheduling the time of the day the beneficiaries are called
using collaborative bandits [28] showed promise in simulation
and this work aims to test it out in a pilot study. The analysis
in [7] shows that there are preferred slots for calling beneficia-
ries. They further show that most calls which are picked are
done so by the third attempt. These factors point towards the
advantages of scheduling these calls in a non-random manner.

Multi-armed bandits represent a well-researched and po-
tent approach for tackling diverse resource allocation chal-
lenges. Numerous methodologies, including phased elimina-
tion [19, 29], Upper Confidence Bound (UCB) [6], Thompson
Sampling [3, 30], and Best-arm Identification [4, 13], have
undergone thorough investigation. The collaborative bandit
problem has witnessed a surge in interest recently, driven
by the widespread adoption of recommender systems [8, 11].
Under specific conditions, several algorithms with robust theo-
retical guarantees have been developed [15, 26]. An algorithm
suited for scenarios with approximate low-rank structure, was
introduced by [28] and is evaluated in this field study.

3 BACKGROUND
3.1 Kilkari
Kilkari [5] is the world’s largest mobile health program fo-
cused on maternal and child health. It is conducted by India’s
Ministry of Health and Family Welfare in partnership with the
NGO ARMMAN. Kilkari uses pre-recorded voice calls to de-
liver vital preventive care information on maternal and infant
health to pregnant women and new mothers. The program
aims to improve access to healthcare information for pregnant
women, mothers of infants, and their families, particularly in
underserved communities.

However, these programs face challenges, including lim-
ited beneficiary phone access and unknown time preferences,
which hinder timely outreach and lead to poor engagement.
Specifically, low listenership of the automated voice messages
is a major challenge. Even with multiple call attempts, approx-
imately 23% of beneficiaries are not reached. Consistent low
listenership can even lead to beneficiaries being dropped from
the program, which can occur if beneficiaries listen to less
than 25% of the messages for six weeks in a row.

To address the challenge of low listenership, the use of
a stochastic bandit approach could be very useful to learn
the favored time slot of individual mothers/beneficiaries. This
is important because factors such as limited phone access,
working hours, and household responsibilities significantly
affect the likelihood of answering a call at a given time slot.
By quickly identifying good time slots for each beneficiary,
engagement with the calls can be improved, and beneficiaries
can be retained in the program. Furthermore, optimizing the
time slot to send automated voice messages can help to reduce
automatic dropouts and save bandwidth.

3.2 Collaborative Bandits
Pal et al. [28] address the challenge of optimizing time slot
selection inmobile health programs like Kilkari, where the goal
is to deliver automated voice messages to beneficiaries at times
they are most likely to engage. To tackle this, [28] formulate
the problem as a multi-agent multi-armed bandit problem
[29]. Here, each beneficiary is modeled as an agent, and each
possible time slot for delivering the message is considered an
arm. The key idea is to learn the preferences of these agents
(beneficiaries) for different arms (time slots) through repeated
interactions (i.e., attempting to deliver messages).



To efficiently solve this multi-agent bandit problem, the un-
derlying algorithm in [26, 27] is applied to the current problem.
This framework leverages the assumption that the preferences
of beneficiaries are not entirely independent but rather share
some underlying structure. Specifically, it assumes that the
matrix representing beneficiaries’ preferences (e.g., the proba-
bility of a beneficiary picking up a call at a given time slot) is
approximately low-rank. This low-rank assumption implies
that there are a few latent factors that explain a significant
portion of the variability in beneficiaries’ time slot prefer-
ences. The collaborative bandit algorithm exploits this low-
rank structure to learn more efficiently by sharing information
across beneficiaries, rather than learning each beneficiary’s
preferences in isolation.

Pal et al. [28] introduces two novel algorithms: Greedy Ma-
trix Completion (MC) and Phased MC. Phased MC is the key
algorithm we use in this work. Greedy MC first has a long
random phase where arms are picked randomly, followed by
prediction which is followed thereafter. Phased MC operates
by updating the estimates in "phases" which implies that no
lengthy exploration phase is required to obtain an initial esti-
mate. To allow for exploration during prediction, a Boltzmann
noise [9] is added. It also uses variance reduction techniques
to improve robustness to noise. Since the exploration phase
required in this algorithm is not as large, it hence prevents
chances of dropout early in the trial due to random calls.

4 EXPERIMENTAL DESIGN
This field trial was conducted in the Kalahandi and Puri dis-
tricts of Odisha, India (upon the guidance of the NGO), to eval-
uate the effectiveness of the collaborative bandit algorithm in
improving call pickup rates within the Kilkari maternal health
program.

4.1 Randomization
Beneficiaries were randomly assigned to either the Random or
Treatment group to minimize bias and ensure comparability
between the groups.
Random Group (Control): This group received calls using
the current Kilkari random call scheduling approach. This
group initially consisted of 8694 beneficiaries.
Treatment Group (Collaborative Bandit): This group re-
ceived calls scheduled using a collaborative bandit algorithm
designed to learn and adapt to individual beneficiaries’ pre-
ferred call times. This group initially consisted of 8724 benefi-
ciaries.

4.2 Trial Phases
The trial consisted of two distinct phases:
(i) Baseline Phase (Weeks 1-3) [7th January - 26th Janu-
ary, 2025]: Both the Random and Treatment groups received
calls using the standard Kilkari random calling strategy. This
phase served to establish a baseline for call pickup rates and
to collect data for the collaborative bandit algorithm in the
Treatment group to initiate learning beneficiaries’ preferences.

The exact number of calls attempted for each beneficiary dur-
ing this phase will be detailed in Section 6.
(ii) Intervention Phase (Weeks 4-5) [27th January - 9th
February 2025]: The Random group continued to receive
calls using the random calling strategy. The Treatment group,
however, received calls scheduled based on the preferences
learned by the collaborative bandit algorithm during the Base-
line Phase in an iterative manner. The exact number of calls
attempted for each beneficiary during this phase will be de-
tailed in Section 6.

4.3 Data Collection
Call logs were collected for all beneficiaries in both groups,
recording the date, time, and outcome (answered/missed) of
each call attempt. The total number of beneficiaries in each
group will be noted in the Section 6.

4.4 Outcome Measure
The primary outcome measure was the call pickup rate, de-
fined as the proportion of successful call pickups out of the
total number of call attempts, for each group during the Inter-
vention Phase.
Ethical Considerations: No ethical approvals were required
for this study as it was deployed on an existing program and
counts as a program improvement.
Statistical Analysis: Statistical analysis was conducted to
compare the call pickup rates between the Random and Treat-
ment groups during the Intervention Phase. We used a simple
two-sample t-statistic to verify the statistical significance be-
tween the two groups, across the baseline and intervention
phase. More information can be found in the next section.

5 PRELIMINARIES
In this section we mathematically define the call pickup-rates
and its variants that are used for the analysis in the later
section. The index 𝑖 represents a beneficiary (or user), 𝑗 ∈ [1, 7]
being one of the seven time slot IDs chosen, 𝑡 being the day,
and 𝑟 ∈ [0, 2] being the re-attempt number for that slot, i.e.
𝑟 = 0 being the first call, and 𝑟 = 1 being the second call
made, if the first call wasn’t picked up. Let 𝑐𝑎𝑙𝑙 be mapped
uniquely to the tuple (𝑖, 𝑗, 𝑡, 𝑟 ). Let 𝐴𝑐𝑎𝑙𝑙 ≡ 𝐴𝑖, 𝑗,𝑡,𝑟 ∈ {0, 1}
denote whether a call attempt was made for user 𝑖 during time-
slot 𝑗 on day 𝑡 andwhether it was the 𝑟 -th re-attempt. Similarly,
let 𝑝𝑐𝑎𝑙𝑙 ≡ 𝑝𝑖, 𝑗,𝑡,𝑟 ∈ {0, 1} denote whether an attempted call
was picked or not. We assume that the set of calls {𝑐𝑎𝑙𝑙 |𝑝𝑐𝑎𝑙𝑙 =
1} ⊆ {𝑐𝑎𝑙𝑙 |𝐴𝑐𝑎𝑙𝑙 = 1}. We now define the pooled pickup-rate
as,

𝑃𝑅𝑝𝑜𝑜𝑙𝑒𝑑 =

∑
∀𝑖, 𝑗,𝑡,𝑟 𝑝𝑖, 𝑗,𝑡,𝑟∑
∀𝑖, 𝑗,𝑡,𝑟 𝐴𝑖, 𝑗,𝑡,𝑟

≡
∑

∀𝑐𝑎𝑙𝑙 𝑝𝑐𝑎𝑙𝑙∑
∀𝑐𝑎𝑙𝑙 𝐴𝑐𝑎𝑙𝑙

. (1)

Alternatively, we can define a user-specific pickup-rate (PR)
and its average as such

𝑃𝑅𝑖 =

∑
∀𝑗,𝑡,𝑟 𝑝𝑖, 𝑗,𝑡,𝑟∑
∀𝑗,𝑡,𝑟 𝐴𝑖, 𝑗,𝑡,𝑟

, 𝑃𝑅𝑢𝑠𝑒𝑟 =

∑
∀𝑖 𝑃𝑅𝑖∑
∀𝑖 1 . (2)



Table 1: Pooled call pickup-rates across calls made to
only those userswho didn’t drop out in the intervention
phase, i.e. active users.

Group 𝑃𝑅𝑎𝑐𝑡𝑖𝑣𝑒
𝑝𝑜𝑜𝑙𝑒𝑑

(baseline)
𝑃𝑅𝑎𝑐𝑡𝑖𝑣𝑒

𝑝𝑜𝑜𝑙𝑒𝑑

(interven-
tion)

% reduc-
tion

p-value

Treatment 0.470 0.463 -1.52% 0.0849
Control 0.465 0.448 -3.62 % 4.65e-05
p-value 0.1345 0.0006 - -

The metric 𝑃𝑅𝑖 can be seen as an estimate of the probability
of user 𝑖 picking up a call.

Two-sample t-test
We use this method in our analysis in Section 6 to determine
whether there is a significant difference between the means
of two independent groups. Given two samples𝑋1, 𝑋2, . . . , 𝑋𝑛1
and𝑌1, 𝑌2, . . . , 𝑌𝑛2 , drawn fromnormal distributionswithmeans
𝜇𝑋 and 𝜇𝑌 , we test the null hypothesis, 𝐻0 : 𝜇𝑋 = 𝜇𝑌 against
the alternative hypothesis, 𝐻𝐴 : 𝜇𝑋 ≠ 𝜇𝑌 .

Test Statistic. The test statistic for the two-sample t-test is
given by:

𝑡 =
𝑋 − 𝑌

𝑆𝑝

√
1
𝑛1

+ 1
𝑛2

, (3)

where 𝑋 and 𝑌 are the sample means, and 𝑆𝑝 is the pooled
standard deviation, computed as:

𝑆𝑝 =

√
(𝑛1 − 1)𝑆2

𝑋
+ (𝑛2 − 1)𝑆2

𝑌

𝑛1 + 𝑛2 − 2 , (4)

where 𝑆2
𝑋
and 𝑆2

𝑌
are the sample variances.

P-Value Calculation. The p-value is obtained by comparing
the observed t-statistic to the critical values of the Student’s t-
distributionwith𝑛1+𝑛2−2 degrees of freedom, 𝑝 = 2𝑃 (𝑇 > |𝑡 |)
where 𝑇 follows a t-distribution under the null hypothesis.
Therefore, a small p-value (typically 𝑝 < 0.05) suggests strong
evidence against the null hypothesis, leading to the conclusion
that the two population means differ significantly. This test
is widely used in various scientific fields, including medicine,
psychology, and economics.

6 RESULTS
In this sectionwe analyse the pickup-rates obtained for the two
groups, i.e. treatment and control during the two phases. We
present the pooled pickup-rate values obtain from 1 in Table
1. We notice that during the baseline phase the performance
was similar across the two groups using a t-test. Furthermore,
the reduction in performance between the two phases for the
treatment group is of lesser significance (p-value > 0.05) as
compared to the control group ((p-value << 0.05). Further-
more, the performance difference in the treatment group is
much better and significant as compared to the control group
in the intervention phase.

We now dive deeper in analysing the difference that arose
in the intervention phase, i.e. from the 27th of January to 9th
February, comparing the pickup-rates in the treatment group
with the control group. In order to remove outliers, we segre-
gate beneficiaries with very high 𝑃𝑅𝑖 , i.e. those who always
pickup their calls and very low 𝑃𝑅𝑖 , i.e. those who never pickup
their calls. For the treatment group, we have 40.59% users with
a 𝑃𝑅𝑖 = 1 and 6.56% users with 𝑃𝑅𝑖 = 0. While the control
group has values of 38.46% and 6.99% respectively. In order
to maintain a fair comparison, we remove the same fraction
of users from both these groups, i.e. removing the top 40.59%
(max{40.59%, 38.46%}) and bottom 6.99% (max{6.56%, 6.99%})
from both the groups according to their pickup-rate probabil-
ity, i.e. 𝑃𝑅𝑖 obtained via 2. We call these tiers, High Tier, Mid
Tier and Low Tier, respectively, emphasising on the Mid Tier
for most of the analysis results.

6.1 Call Volumes
Table 2 summarizes the number of calls made to each arm
within each tier for the intervention phase only.

Table 2: Call Volumes by Tier and Arm

Tier Treatment Control
High 5077 5222
Mid 16775 17345
Low 2789 2542

6.2 Call Pickup Rates
Table 3 presents the call pickup rates for each arm within
each tier, along with the corresponding p-values for statistical
significance. We use a 2-sample t-test for the two arms in
each of the 3 tiers and obtain the p-value according to the
methodology mentioned in the appendix (add ref).

Table 3: Call Pickup Rates by Tier and Arm

Tier Treatment Control % improvement p-value
High 1.0000 0.9732 2.75% 4.66e-32
Mid 0.3763 0.3555 5.83% 7.07e-05
Low 0.0100 0.0000 NaN 3.98e-07

High Tier. By construction, the treatment group will have all
its users with a 𝑃𝑅𝑖 = 1,∀𝑖 , while the control group having
an average, i.e 𝑃𝑅𝑢𝑠𝑒𝑟 < 1 representing the mean for this tier
only.

Mid Tier. The treatment group achieved a call pickup rate of
0.3763 (37.63%), while the control group achieved a rate of
0.3555 (35.55%). This difference amounts to a 5.83% improve-
ment, and it was statistically significant (p = 7.07e-05), demon-
strating that the collaborative bandit algorithm significantly
improved call pickup rates for beneficiaries in the middle tier.

Low Tier. For the Low Tier, the treatment group had a call
pickup rate of 0.01 (1.00%), and the control group had a rate
of 0.0000, as expected by construction, similar with the High
Tier.



6.3 Time slot wise analysis
In order to see which time slots saw the most improvement, we
analyse the calls made for the mid tier group (Tier 2) in Table
4. However for each time slot, we use the following formulae
for Tables 4,

𝑃𝑅
𝑗

𝑝𝑜𝑜𝑙𝑒𝑑
=

∑
∀𝑖,𝑡,𝑟 𝑝𝑖, 𝑗,𝑡,𝑟∑
∀𝑖,𝑡,𝑟 𝐴𝑖, 𝑗,𝑡,𝑟

. (5)

Table 4: Pooled call pickup-rates 𝑃𝑅 𝑗

𝑝𝑜𝑜𝑙𝑒𝑑
across all calls

made in the respective time slot 𝑗 given by 5.

Time Slot ID Treatment Control % pickup-rate p-value
1 0.3584 0.3337 7.4104 0.0563
2 0.3510 0.3365 4.2896 0.2695
3 0.3908 0.3625 7.8111 0.0438
4 0.3841 0.3683 4.2734 0.2609
5 0.3753 0.3686 1.8228 0.6385
6 0.3598 0.3223 11.6131 0.0060
7 0.4197 0.4121 1.8303 0.6115

We see a positive improvement in pickup-rate across all time
slots and a huge improvement of 11.61% in time slot id 6 es-
pecially. The p-values are significant for the slots with > 5%
improvement at the 0.10 level.

6.4 Summary
The tiered analysis reveals that the collaborative bandit algo-
rithm (the treatment group) significantly improved call pickup
rates compared to the random calling strategy (random con-
trol group), particularly for beneficiaries in the middle and
bottom tiers. This demonstrates the algorithm’s effectiveness
in optimizing call scheduling and enhancing message delivery
within the Kilkari program.

REFERENCES
[1] [n.d.]. Armman Home - ARMMAN - Helping Mothers and Children —

armman.org. https://armman.org. [Accessed 31-05-2024].
[2] [n.d.]. SDG Target 3.1 Maternal mortality — who.int. https://www.who.

int/data/gho/data/themes/topics/sdg-target-3-1-maternal-mortality. [Ac-
cessed 31-05-2024].

[3] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for
the multi-armed bandit problem. In Conference on learning theory. JMLR
Workshop and Conference Proceedings, 39–1.

[4] Shubhada Agrawal, Sandeep Juneja, and Peter Glynn. 2020. Optimal 𝛿-
Correct Best-Arm Selection for Heavy-Tailed Distributions. In Algorithmic
Learning Theory. PMLR, 61–110.

[5] ARMMAN. 2023. Kilkari. https://armman.org/kilkari/
[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analy-

sis of the multiarmed bandit problem. Machine learning 47 (2002), 235–256.
[7] Jean Juste Harrisson Bashingwa, Diwakar Mohan, Sara Chamberlain, Salil

Arora, Jai Mendiratta, Sai Rahul, Vinod Chauhan, Kerry Scott, Neha Shah,
Osama Ummer, et al. 2021. Assessing exposure to Kilkari: a big data
analysis of a large maternal mobile messaging service across 13 states in
India. BMJ global health 6, Suppl 5 (2021), e005213.

[8] Guy Bresler, Devavrat Shah, and Luis Filipe Voloch. 2016. Collaborative
filtering with low regret. In Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Science.
207–220.

[9] Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu.
2017. Boltzmann exploration done right. Advances in neural information
processing systems 30 (2017).

[10] Mahbub Elahi Chowdhury, Shafayatul Islam Shiblee, and Heidi E. Jones.
2019. Does mHealth voice messaging work for improving knowledge and

practice ofmaternal and newborn healthcare? BMCMedical Informatics and
Decision Making 19, 1 (05 Sep 2019), 179. https://doi.org/10.1186/s12911-
019-0903-z

[11] Hamid Dadkhahi and Sahand Negahban. 2018. Alternating linear ban-
dits for online matrix-factorization recommendation. arXiv preprint
arXiv:1810.09401 (2018).

[12] Arpan Dasgupta, Niclas Boehmer, Neha Madhiwalla, Aparna Hedge, Bryan
Wilder, Milind Tambe, and Aparna Taneja. 2024. Preliminary Study of the
Impact of AI-Based Interventions on Health and Behavioral Outcomes in
Maternal Health Programs. arXiv preprint arXiv:2407.11973 (2024).

[13] Aurélien Garivier and Emilie Kaufmann. 2016. Optimal best arm identi-
fication with fixed confidence. In Conference on Learning Theory. PMLR,
998–1027.

[14] Aparna Hegde and Riddhi Doshi. 2016. Assessing the Impact of Mobile-
based Intervention on Health Literacy among Pregnant Women in Urban
India. In American Medical Informatics Association Annual Symposium.
1423.

[15] Prateek Jain and Soumyabrata Pal. 2022. Online low rank matrix comple-
tion. arXiv preprint arXiv:2209.03997 (2022).

[16] Bashingwa JJH, Mohan D, Chamberlain S, Arora S, Mendiratta J, Rahul
S, Chauhan V, Scott K, Shah N, Ummer O, Ved R, Mulder N, and LeFevre
AE. 2021. Assessing exposure to Kilkari: a big data analysis of a large
maternal mobile messaging service across 13 states in India. BMJ Glob
Health (2021).

[17] Johnblack K Kabukye, Onaedo Ilozumba, Jacqueline EW Broerse, Nicolette
de Keizer, and Ronald Cornet. 2021. Implementation of an interactive voice
response system for cancer awareness in Uganda: Mixed methods study.
JMIR MHealth UHealth 9, 1 (Jan. 2021), e22061.

[18] Arshika Lalan, Shresth Verma, Kumar Madhu Sudan, Amrita Mahale,
Aparna Hegde, Milind Tambe, and Aparna Taneja. 2023. Analyzing and Pre-
dicting Low-Listenership Trends in a Large-Scale Mobile Health Program:
A Preliminary Investigation. arXiv preprint arXiv:2311.07139 (2023).

[19] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge
University Press.

[20] Amnesty LeFevre, Smisha Agarwal, Sara Chamberlain, Kerry Scott, Anna
Godfrey, Rakesh Chandra, Aditya Singh, Neha Shah, Diva Dhar, Alain
Labrique, et al. 2019. Are stage-based health informationmessages effective
and good value for money in improvingmaternal newborn and child health
outcomes in India? protocol for an individually randomized controlled
trial. Trials 20 (2019), 1–12.

[21] Aditya Mate, Lovish Madaan, Aparna Taneja, Neha Madhiwalla, Shresth
Verma, Gargi Singh, Aparna Hegde, Pradeep Varakantham, and Milind
Tambe. 2022. Field study in deploying restless multi-armed bandits: As-
sisting non-profits in improving maternal and child health. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 36. 12017–12025.

[22] Diwakar Mohan, Kerry Scott, Neha Shah, Jean Juste Harrisson Bashingwa,
Arpita Chakraborty, Osama Ummer, Anna Godfrey, Priyanka Dutt, Sara
Chamberlain, and Amnesty Elizabeth LeFevre. 2021. Can health informa-
tion through mobile phones close the divide in health behaviours among
the marginalised? An equity analysis of Kilkari in Madhya Pradesh, India.
BMJ Global Health 6, Suppl 5 (2021), e005512.

[23] Nirmala Murthy, Subhashini Chandrasekharan, Muthu Perumal Prakash,
Aakash Ganju, Joanne Peter, Nadi Kaonga, and Patricia Mechael. 2020.
Effects of an mHealth voice message service (mMitra) on maternal health
knowledge and practices of low-income women in India: findings from a
pseudo-randomized controlled trial. BMC Public Health 20, 1 (01 Jun 2020),
820. https://doi.org/10.1186/s12889-020-08965-2

[24] Nirmala Murthy, Subhashini Chandrasekharan, Muthu Perumal Prakash,
Aakash Ganju, Joanne Peter, Nadi Kaonga, and Patricia Mechael. 2020.
Effects of an mHealth voice message service (mMitra) on maternal health
knowledge and practices of low-income women in India: findings from a
pseudo-randomized controlled trial. BMC Public Health 20, 1 (2020), 1–10.

[25] Vineet Nair, Kritika Prakash, Michael Wilbur, Aparna Taneja, Corinne
Namblard, Oyindamola Adeyemo, Abhishek Dubey, Abiodun Adereni,
Milind Tambe, and Ayan Mukhopadhyay. 2022. Adviser: Ai-driven vac-
cination intervention optimiser for increasing vaccine uptake in nigeria.
arXiv preprint arXiv:2204.13663 (2022).

[26] Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, and Prateek
Jain. 2023. Optimal algorithms for latent bandits with cluster structure.
In International Conference on Artificial Intelligence and Statistics. PMLR,
7540–7577.

[27] Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, and Prateek
Jain. 2023. Optimal Algorithms for Latent Bandits with Cluster Structure.
arXiv:2301.07040 [cs.LG] https://arxiv.org/abs/2301.07040

[28] Soumyabrata Pal, Milind Tambe, Arun Suggala, and Aparna Taneja. 2024.
ImprovingMobileMaternal and Child Health Care Programs: Collaborative
Bandits for Time slot selection. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems. 1540–1548.

https://armman.org
https://www.who.int/data/gho/data/themes/topics/sdg-target-3-1-maternal-mortality
https://www.who.int/data/gho/data/themes/topics/sdg-target-3-1-maternal-mortality
https://armman.org/kilkari/
https://doi.org/10.1186/s12911-019-0903-z
https://doi.org/10.1186/s12911-019-0903-z
https://doi.org/10.1186/s12889-020-08965-2
https://arxiv.org/abs/2301.07040
https://arxiv.org/abs/2301.07040


[29] Aleksandrs Slivkins et al. 2019. Introduction to multi-armed bandits. Foun-
dations and Trends® in Machine Learning 12, 1-2 (2019), 1–286.

[30] William R Thompson. 1933. On the likelihood that one unknown proba-
bility exceeds another in view of the evidence of two samples. Biometrika
25, 3-4 (1933), 285–294.

[31] Shresth Verma, Gargi Singh, Aditya S Mate, Paritosh Verma, Sruthi Goran-
tala, Neha Madhiwalla, Aparna Hegde, Divy Hasmukhbhai Thakkar, Man-
ish Jain, Milind Shashikant Tambe, et al. 2023. Deployed SAHELI: Field
Optimization of Intelligent RMAB for Maternal and Child Care. In Innova-
tive Applications of Artificial Intelligence (IAAI).

APPENDIX
A CALL DISTRIBUTIONS
In this section, we will see the call distributions and how
they changed during the different phases especially for the
treatment group (collaborative bandits algorithm). The calls
were also made according to a 3-2-2-2 pattern, i.e. if a user
doesn’t pickup the first time we call them 2 more times with an
interval of 10-20 minutes that day. If they still don’t pickup up,
we call them twice the next day in the slot recommended by
the algorithm for that day – the slot with the highest pickup-
rate probability – and twice the day after etc. until a call has
been picked. If a call was picked in any one of these 9 attempts,
the next call is made a calendar week after the first call. We
use the following method to obtain the call recommendation
distribution 𝜋 ( 𝑗) for time-slot 𝑗 for both the groups in the
intervention phase,

count( 𝑗) =
∑
∀𝑖,𝑡

𝐴𝑖, 𝑗,𝑡,𝑟=0, 𝜋 ( 𝑗) = count( 𝑗)∑7
𝑗=1 count( 𝑗)

.

In Figure 1, we can see how the call recommendation distribu-
tion of the treatment group deviates from that of the control
group indicating that our algorithm is potentially finding the
right time slots to call at.



(a) Treatment Group (b) Control Group

Figure 1: The above bars represent the fraction of unique calls, i.e. the first call recommended by the algorithm
without considering re-attempts. These give a truer representation of the call recommendation distribution or policy.
(a) despite the distribution having a notable dip in slot 5 and 6, we still observe good pickup success rates in slot 6
from Table 4, and for (b) the distribution is almost uniform as expected.
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