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ABSTRACT
Municipalities maintain critical infrastructure through inspections,

both proactive and in response to complaints. For example, the

Chicago Department of Public Health (CDPH) periodically inspects

7000 food establishments to maintain the safety of food bought, sold,

or prepared for public consumption. Restless multi-armed bandit

(RMABs) appear to be a useful tool for optimizing the scheduling of

inspections, as the schedule aims to keep as many establishments

in the “passing” state subject to an action limit per time period.

However, a key challenge arises: satisfying timing and frequency

constraints. Municipal agencies often provide an inspectionwindow

to each establishment (e.g., a two-week period where an inspec-

tion will occur) and guarantee about the minimum frequency of

inspection (e.g., once per year). We develop an extension to Whittle

index-based systems for RMABs that can guarantee both action

window constraints and minimum frequencies. Briefly, we take a

Whittle index-based view, enforcing window constraints by inte-

grating the window structure into individual MDPs, and frequency

constraints through a higher-level scheduling algorithm that aims

to maximize the Whittle index. We demonstrate the performance

and scalability of our methods in experiments using both synthetic

and real data (with 7000 establishments inspected per year). Not

only does our approach enforce constraints more effectively than

naive methods, it also achieves higher rewards, up to 20%.
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1 INTRODUCTION
Restless multi-armed bandits (RMABs) [24] describe a sequential

decision problemwhere an agent aims to manage a large population

of Markov decision processes (MDPs) that are independent except

for a shared action budget at each timestep. These arise in a variety

of settings—as a motivating example for this work, we consider

food establishment inspections carried out by a city. The city aims

to keep as many establishments in a “good” state as possible (e.g.,

that they would pass an inspection if they were inspected) subject

to a limit of 𝑘 on the number of inspections they can perform per
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time period. Each establishment is represented by an MDP with

different transition dynamics, i.e., propensities to be in a passing

state without inspection.

We argue that RMABs are a valuable framework to study for two

reasons. First, they are a practical way to introduce a sequential

component to many real-world, large-scale, optimization problems

that are naturally sequential without adding much complexity. In

many tasks, if data is employed at all, it is used to estimate the

probability that a process is currently in a bad state and prioritize

acting on those processes (e.g., [11] in the food inspection case).

Such a heuristic can have poor alignment with the true objective

because it does not consider the effect of acting on the process

(i.e., the ability of an action to return it to a good state) nor the

propensity of a process to recover on its own.

Second, RMABs can often be solved approximately optimally in

a computationally efficient manner through the use of the Whittle

index heuristic [24]. Despite their combinatorially large action

space size and exponential state space, under a technical condition

known as indexability, they can be decomposed into independent

optimization problems via dualizing the budget constraint. The

resulting heuristic offers asymptotically optimal rewards.

As a result, RMABs have attracted wide interest over the past

several decades in a large variety of resource allocation tasks, in-

cluding wireless networking [13], machine maintenance [1, 7], and

planning health interventions [3, 15, 17].

In practical applications of RMABs, it is common to place to

constraints on the timing and frequency of arm pulls. For example,

the Chicago Department of Public Health (CDPH) provides estab-

lishments with an inspection window: they state a particular time

period during which the routine inspection will occur. This window

makes the inspection less disruptive to the establishment. A similar

constraint is used by a field study of applying bandits in the child

health [17] in the public health information setting, where each

beneficiary receives at most one call each fixed number of weeks.

In addition, CDPH guarantees at least one inspection per year, per

establishment, providing a baseline level of service.

In this paper, we develop methods for integrating action con-

straints into RMABs. Our contributions are as follows:

• Window constraints. For window constraints (at most one

action during a prescribed time window), we show that they

can be written into the structure of the MDP by introducing

new timing states and describe the cost of doing so. Because

we propose a structural approach, it ensures that window

constraints are never violated, and state-of-the-art RMAB

techniques can be used to solve the resulting instances.
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• Frequency constraints and lookahead. Frequency con-

straints present challenges because the Whittle index heuris-

tic is greedy and does not look into the future. In addition,

window constraints can require lookahead to prevent con-

flicts. We introduce an integer programming-based planner

that aims to maximize the sum of Whittle indices subject

to constraints. We find this integer program to be highly

scalable and show that the constraint matrix is totally uni-

modular in some cases.

• Empirical evaluation. It is important to quantitatively eval-

uate the impact of introducing explicit constraint modeling

in RMABs, as this introduces additional complexity. We eval-

uate reward, constraint violations, and computation time

in both real and synthetic data. In our tested cases, we find

that ad hoc methods for handling constraints do not per-

form much better than non-sequential baselines. However,

RMABs with explicitly modeled constraints can improve the

objective value by around 20%.

Collectively, our approach is a key advance for constrained RMABs

and integrating lookahead planning into RMABs. We are the first

to integrate lookahead (which is often intractable), and we show

that it produces substantial benefits when the goal is to achieve

high rewards and satisfy constraints simultaneously.

2 RELATEDWORK
Food safety inspections. In 2015, CDPH leveraged historical food

inspection data and trained a supervised learning model to predict

the probability that an inspection would uncover a critical viola-

tion [11]. [12] independently analyzed the impact of prediction-

driven scheduling. However, such models only consider one-shot

predictions for critical violations and do not include the sequen-

tial aspect of scheduling. Fairness is of substantial interest in the

provision of municipal services [22]. We consider fairness outside

the scope of this paper, but a potentially interesting direction for

future work.

Restless multi-armed bandits (RMABs). RMABs are PSPACE-hard

in the worst case, but [24] showed that a subclass of them, so-

called indexable RMABs, admit an efficient asymptotically optimal

solution. Particularly relevant classes of indexable RMABs are those

that extend the machine maintenance problem families [8], and

scheduling problems for sensors [23], wireless transmission [10],

and health interventions [16]. These RMABs are structured so the

state of each process declines if it is not acted on, and differ in

the details of action effect and what information is observed with

or without an action. This work aims to develop techniques to

integrate action constraints into RMABs of these types.

RMABs with Constraints. Several RMAB models have included

constraints. In a project applying RMABs to assist maternal and

child health via phone calls, a “sleeping period” for arms was en-

forced after they were pulled by the Whittle index heuristic [17]

(see 4.2). It appears to have been enforced in an ad hoc manner,

by blocking pulls that would have violated the constraint. [25] de-

ployed RMABs in a deadline scheduling setting and integrated the

deadline constraints by adding dummy arms. Fairness is another

setting where constraints can arise. [9] introduced the ProbFair pol-

icy, ensuring a strictly positive lower bound on the probability of

being pulled at each time step while still satisfying the budget con-

straints. To the best of our knowledge, we are the first to consider

action window and frequency constraints.

3 PRELIMINARIES
An RMAB consists of 𝑁 binary action MDPs (arms). We define

the 𝑖th two-action MDP [20] as a tuple (S𝑖 ,A, 𝑃𝑖 , 𝑅𝑖 , 𝑠
(0)
𝑖

, 𝛾). The
discount factor 𝛾 and action space A = {0, 1} are fixed across all

MDPs. When the action 1 (resp. 0) is taken on an arm at time 𝑡 , we

refer to that arm as active (resp. passive). The rest are arm specific:

S𝑖 is the state space, 𝑃𝑖 : S𝑖 × A → ΔS𝑖 is the transition function,

𝑠
(0)
𝑖

is the start state, and 𝑅𝑖 : S𝑖 × A → R is the reward function..

Because there are only two actions, the transition function 𝑃𝑖 can

be decomposed into an an active transition 𝑃
(1)
𝑖

: S𝑖 → ΔS𝑖 and a

passive transition 𝑃
(0)
𝑖

: S𝑖 → ΔS𝑖 .
A RMAB consists of 𝑁 binary action MDPs and a per timestep

budget constraint 𝑘 . At each round 𝑡 , the agent has a budget 𝑘 ,

where 𝑘 ≪ 𝑁 , meaning at most 𝑘 arms can be “pulled”, i.e., have

their action set to 1. The MDP which is pulled transits actively and

otherwise transits passively. Upon transitions, the rewards from all

MDPs are collected and accumulated over time. The goal is to find

an optimal policy 𝜋★ to maximize our total rewards—formally,

𝜋∗ = argmax

𝜋
𝐽 = arg max

𝜋 :
∑

𝑖 𝜋𝑖 (𝑆𝑡 )≤𝑘

∑︁
𝑖

∑︁
𝑡

𝛾𝑡𝑅𝑖 (𝑠𝑖,𝑡 , 𝜋 (𝑆𝑡 )), (1)

where 𝜋𝑖 (𝑆𝑡 ) ∈ A is the action selected by 𝜋 for arm 𝑖 , 𝑆𝑡 ∈ S1 ×
. . . × S𝑁 is the joint state of all arms at time 𝑡 , and 𝑠𝑖,𝑡 ∈ S𝑖 is the
state of arm 𝑖 at time 𝑡 ,

3.1 Whittle Indices
General RMABs have an exponentially large state space and a com-

binatorially large action space. The Whittle index method provides

tractability for some classes of RMABs [24]. It works by computing

a “benefit of acting” for each arm, called the Whittle index. The
Whittle index heuristic then acts on the 𝑘 arms with highest Whittle

indices.

To calculate the Whittle index for each arm, we search over

“subsidies” for the passive actionm. Formally the subsidy𝑚modifies

the reward function 𝑅𝑖 into 𝑅
(𝑚)
𝑖

:

𝑅
(𝑚)
𝑖

(𝑠𝑖 , 0) = 𝑅𝑖 (𝑠𝑖 ) +𝑚;𝑅
(𝑚)
𝑖

(𝑠𝑖 , 1) = 𝑅𝑖 (𝑠𝑖 ). (2)

The goal is to identify the smallest subsidy𝑚 such, for the current

state 𝑠𝑖,𝑡 , the long-term reward for the passive and active actions

are the same. To define this formally, we first define the 𝑄 function

for arm 𝑖 under subsidy𝑚:

𝑄
(𝑚)
𝑖

(𝑠𝑖 , 𝑎) = 𝑅
(𝑚)
𝑖

(𝑠𝑖 , 𝑎)+

𝛾 max

𝑎′∈A

∑︁
𝑠′
𝑖
∈S⟩

𝑃𝑖 (𝑠′𝑖 |𝑠𝑖 , 𝑎)𝑄
(𝑚)
𝑖

(𝑠′𝑖 , 𝑎
′). (3)

Definition The Whittle index for state 𝑠𝑖,𝑡 is the smallest m
which makes it equally optimal to take the active and passive ac-

tions:

𝑤 (𝑠𝑖,𝑡 ) = inf

𝑚

{
𝑚 : 𝑄

(𝑚)
𝑖

(𝑠𝑖,𝑡 , 𝑎 = 0) ≥ 𝑄
(𝑚)
𝑖

(𝑠𝑖,𝑡 , 𝑎 = 1)
}
. (4)
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For the Whittle index heuristic to have asymptotic optimality

guarantees, each arm must satisfy a technical condition called in-
dexability [24]. Intuitively, indexability says that, as𝑚 increases,

the optimal action can only switch to passive and cannot switch

back to active. Let𝑊
(𝑚)
𝑖

be the set of states for which𝑄
(𝑚)
𝑖

(𝑠𝑖,𝑡 , 𝑎 =

0) ≥ 𝑄
(𝑚)
𝑖

(𝑠𝑖,𝑡 , 𝑎 = 1), i.e., the passive action has an equal or higher

return than the active action.

Definition (Indexability). An arm is said to be indexable if𝑊
(𝑚)
𝑖

is non-decreasing in m, i.e., for any𝑚1,𝑚2 ∈ R such that𝑚1 ≤ 𝑚2,

we have𝑊
(𝑚1 )
𝑖

⊆𝑊
(𝑚2 )
𝑖

. An RMAB is indexable if every arm is

indexable.

3.2 Weighted 𝑏-Matching
The lookahead planning algorithm we develop will be reducible to

variants of the weighted 𝑏-matching problem [21]. A weighted 𝑏-

matching instance is described by an undirected graph 𝐺 = (𝑉 , 𝐸),
an edge weight vector 𝑤 : 𝐸 → R, and a non-negative 𝑏 vector

𝑏 : 𝑉 → N+. The objective in a maximum weight 𝑏-matching is to

find a set of edges 𝑥 with maximumweight, subject to the constraint

that only 𝑏 (𝑣) edges that are adjacent to node 𝑣 can be selected.

Formally,

max

𝑥
𝑤𝑇 𝑥, s.t.

∑︁
𝑢

𝑥𝑢,𝑣 ≤ 𝑏 (𝑣),∀𝑣 ∈ 𝑉 (5)

Weighted 𝑏-matchings can be solved in polynomial time, e.g., in

𝑂 ( |𝑉 |2max𝑣 𝑏 (𝑣)) [19].
A more challenging weighted 𝑏-matching variant is weighted

bipartite𝑏-matching [4]. In this variant, graph nodes are partitioned

into a right set 𝑈 and a left set 𝑉 , and there are no edges within

each partition. Nodes in the left (resp., right) set have maximum

matching cardinality 𝐿+ (resp., 𝑅+) and minimum cardinality 𝐿−

(resp., 𝑅−
). Under these constraints, finding a maximum weight

𝑏-matching is NP-hard.

4 PROBLEM FORMULATION
We study two types of action constraints that arise in the motivat-

ing food establishment inspection problem. We begin by defining a

sample RMAB with domain-motivated constraints (Sec. 4.1). Win-

dow constraints specify an action windowwhere the arm is allowed

to be acted on (Sec. 4.2). Frequency constraints specify a minimum

number of actions each arm must receive over a period of time

(Sec. 4.4).

4.1 Motivating Inspection RMAB
Motivated by the food establishment setting, we define a model

RMAB with action constraints. This RMAB can be viewed as a

collapsing bandit [16] or a resetting bandit [14], and both have

indexability guarantees. Each establishment has an unobserved

binary state that is either 1 (i.e., inspection passing) or 0 (i.e., in-

spection failing). When we act on the establishment, we assume

that it is restored to the passing state and define the reward func-

tion to be 1 for each time period the establishment is in the passing

state and 0 otherwise. We think of time periods as months—each

establishment needs to be inspected once a year and will have a

two-month period where this inspection can occur.

As the true states are not directly observable, each arm is a

partially observed Markov decision process (POMDP) [2]. We can

rewrite the POMDP as a fully observed belief-state MDP, allowing

for direct representation as an RMAB.

For the underlying MDP, we assume passive transitions 𝑃
(0)
𝑖

and

active transitions 𝑃
(1)
𝑖

as follows:

𝑃
(1)
𝑖

=

(
1 0

1 0

)
, 𝑃

(0)
𝑖

=

(
𝑃
(00)
𝑖

𝑃
(01)
𝑖

𝑃
(10)
𝑖

𝑃
(11)
𝑖

)
Each establishment has its own passive transition probabilities

and all share the same action impacts—actions always restore the

establishment to the passing state in the next timestep.

Converting this POMDP to a belief-state MDP yields a set of

belief states that are reachable from the passing state 𝑏1 = [0, 1] (as
a column vector), i.e., (𝑃 (0)

𝑖
)𝑡𝑏1, where 𝑡 is any non-negative integer.

In practice, the number of states needed to model belief dynamics

precisely enough is dependent on the rate of MDP mixing. A faster

mixing MDP will reach its stationary state faster and require fewer

states—once we are sufficiently close to the stationary state, we can

have the state transition to itself. The resulting belief-state MDP

has a chain structure as shown in Fig 1 and resets to the head of

the chain when the active action is taken.

Collapsing bandits generalize this setting by allowing 𝑃
(1)
𝑖

to

vary per arm, resulting in a two-chain structure. In general, our

methods will also apply to this setting with minor modifications.

4.2 Action Windows and MDP Encoding
We use action windows as an exemplar for the family constraints

where the constraint can be directly encoded into the RMAB struc-

ture, i.e., a vanilla RMAB with an action window constraint can be

rewritten as a vanilla RMAB with a different arm structure. This

is in some sense the ideal way to add constraints—we can apply

whatever existing state-of-the-art algorithm directly.

To add action windows to the MDP structure, we add two pieces

of information to the states (in addition to the belief state 𝑏 ∈ [0, 1]),
and modify the transitions to remove the impact of actions outside

the window.

• 𝑡 : the current timestep. In our motivating example, we can

use 𝑡 mod 12, as the inspection window for each establish-

ment is at the same time each year. Alternatively, if the

windows are not periodic, this can be replaced with a pair of

counters, with one indicating the remaining time in the cur-

rent window and the other the time until the next window.

• 𝑚: A counter for the number of actions remaining in the

action window. When the process enters the action window,

this is set to the total number of active actions allowed during

the window (in ourmotivating example, this is 1). Each active

action decrements the counter by 1. If the counter is zero, the

active action is still available, but it has the same transitions

as the passive action.

As shown in Figure 1, such an encoding increases the number

of states in the MDP. The number of states is increased by a factor

of 𝑂 (𝐿𝑀), where 𝐿 is the number of counter values required to

track when the window is active, and 𝑀 is the total number of

actions allowed during the window. For the motivating RMAB, this
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Figure 1: A example portion of the MDP after encoding the
action window constraint. Suppose we have 5 belief states
(𝑏1, ..., 𝑏5), an actionwindowatmonths 3 and 4, and 12months
between action windows. 0 is the passive action, 1 is the
active action. After (𝑏5, 12, 0) is reached, a new chain begins
at (𝑏5, 1, 0) (not shown).

increase is by a factor of 14. But such encoding is also applicable

to more complex situations: An arm has multiple action windows

and multiple inspections allowed per window. We provide a precise

description of the new MDP in Alg. 1. All new transitions are

deterministic (probability = 1).

To enforce that there are 𝜂 timesteps of no action (sleep) after

each action, as in [17], requires a factor of 𝜂 more states. We add a

counter to the state which records the number of timesteps until

the next pull is allowed. When the counter is positive, the effect of

an action is the same as the effect of no action.

Observation 1. The Whittle index of arms that are not eligible
to be pulled is zero.

Arms outside the action window (or during mandatory sleep)

have no advantage for the active over the passive action. Thus,

their Whittle index will be zero. In practice, this means the Whittle

heuristic will never select these arms, as long as there are some

arms with positive action effects. If they are selected anyway, the

agent can discard these actions to no ill effect.

Adding action windows to the MDP encoding will cause the

Whittle index to increase when the end of a window is reached.

This makes it more likely that an arm will be pulled before its

window expires. Nevertheless, we begin to encounter the limits of

the greedy Whittle index heuristic. For example, if we have several

arms that have action windows that end at the same timestep, we

may miss some action opportunities without planning ahead. In

the next section, we develop a method for planning with lookahead,

which will allow us to enforce frequency constraints as well as

optimize timing of actions subject to window constraints.

Indexability. We are not aware of an existing class of indexable

RMABs that includes the action window MDPs with counters that

we define in this section. We empirically check for indexability

through tracking the set of passive states as the subsidy changes

and find no violations.

Algorithm 1 Encoding an ActionWindow in theMotivating RMAB

Input: 𝑃0, 𝑃1, 𝑆 =
{
𝑏1, 𝑏2, ..., 𝑏 𝑗

}
,𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑙 }

Parameter: Number of steps between action windows L
Output: 𝑃 (0)

𝑛𝑒𝑤 , 𝑃
(1)
𝑛𝑒𝑤

1: Initialization: 𝑆𝑛𝑒𝑤 , 𝑃
(0)
𝑛𝑒𝑤 , 𝑃

(1)
𝑛𝑒𝑤 = ∅

2: for 𝑖 = 1, 2, ..., 𝐽 do
3: for 𝑡 = 1, 2, ..., 𝐿 do
4: add [𝑏𝑖 , 𝑡, 0] into 𝑆𝑛𝑒𝑤
5: if 𝑡 ∈ 𝑇 then
6: add [𝑏𝑖 , 𝑡, 1] into 𝑆𝑛𝑒𝑤
7: end if
8: end for
9: end for
10: for all 𝑠 = [𝑏, 𝑡,𝑚] ∈ 𝑆𝑛𝑒𝑤 do
11: if 𝑡 = ∥𝐿∥ then
12: add [𝑏, 𝑡,𝑚] → [𝑃 (0) (𝑏), (𝑡 + 1)%𝐿, 0] to 𝑃 (0)

𝑛𝑒𝑤 , 𝑃
(1)
𝑛𝑒𝑤

13: end if
14: if 𝑡 ∉ 𝑇 then
15: add [𝑏, 𝑡,𝑚] → [𝑃 (0) (𝑏), (𝑡 + 1)%𝐿,𝑚] to 𝑃 (0)

𝑛𝑒𝑤 , 𝑃
(1)
𝑛𝑒𝑤

16: else
17: if 𝑚 = 0 then
18: add [𝑏, 𝑡,𝑚] → [𝑃 (0) (𝑏), (𝑡 + 1)%𝐿,𝑚] to 𝑃 (0)

𝑛𝑒𝑤 , 𝑃
(1)
𝑛𝑒𝑤

19: else
20: add [𝑏, 𝑡,𝑚] → [𝑃 (1) (𝑏), (𝑡 + 1)%𝐿,𝑚 − 1] to 𝑃1𝑛𝑒𝑤
21: add [𝑏, 𝑡,𝑚] → [𝑃 (0) (𝑏), (𝑡 + 1)%𝐿,𝑚] to 𝑃 (0)

𝑛𝑒𝑤

22: end if
23: end if
24: end for
25: return solution

4.3 Reforming MDP Transitions
As we can see from the encoding, one state is split into more than

10 new states, so transitions are also reformed. This reforming

algorithm is intuitive: the belief state transits to the next based

on the original MDP, time increases by one and the information

whether inspected passes to the next.

4.4 Frequency Constraints and Lookahead
It is possible to enforce maximum action limits via editing the indi-

vidual MDPs, but it is not possible to enforce minimums this way. In

the motivating RMAB, we want to enforce the constraint that each

establishment is inspected exactly once or multiple times per year

since in the food inspection task, the authority has responsibilities

to inspect every food establishment and never skip one. To enforce

this kind of frequency constraint, we will replace the Whittle index

heuristic with a sequential planning component that aims to maxi-

mize the sum of indices of pulled arms over a lookahead window,

not just in the next time step.

We begin with the case where each arm needs to be pulled

exactly one time over the lookahead window (and later relax this).

In the motivating RMAB, this window will be one year. Formally,

we let 𝑎𝑖,𝑡 be whether arm 𝑖 is pulled at time 𝑡 and 𝑤𝑖,𝑡 be the

Whittle index of arm 𝑖 at time 𝑡 . These Whittle indices can come

from an RMAB with any encoded constraints, such as those in the
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previous section. We seek to maximize

𝑁∑
𝑖=1

𝑇∑
𝑡=1

𝑎𝑖,𝑡𝑤𝑖,𝑡 , subject to the

following constraints:

(1)

𝑁∑
𝑖=1

𝑎𝑖,𝑡 ≤ 𝑘 : only 𝑘 arms can be pulled in each timestep.

(2)

𝑇∑
𝑡=1

𝑎𝑖,𝑡 ≤ 1: each arm needs to be pulled at most once during

the lookahead period. This is needed to make defining𝑤𝑖,𝑡

simple—otherwise𝑤𝑖,𝑡 depends on the time of the last pull.

(3) 𝑎𝑖,𝑡 =

{
1 or 0 if t in action window

0 otherwise

This constraint

forces 𝑎 out of the action window to be 0, which satisfies

one of our problem setting: arms can only be pulled during

their action windows.

(4) Additional desired frequency constraints, e.g., each armmust

be pulled at least once during certain timesteps.

Theorem 1. Maximizing the sum of Whittle indices without ad-
ditional frequency constraints OR with the constraint that each arm
must be pulled exactly once during the lookahead window can be
reduced to a weighted 𝑏-matching.

Proof. The proof converts each timestep and each arm to nodes

in the matching graph with different 𝑏-values. We formulate the

weighted 𝑏-matching instance as follows. For each arm 𝑖 ∈ [𝑁 ],
create a node 𝑖 . For each timestep 𝑡 in the lookahead period, create

a node 𝑡 . For each arm-timestep pair (𝑖, 𝑡) where an action can

occur (i.e., no timing constraints are violated), create an edge of

weight𝑤𝑖,𝑡 between 𝑖 and 𝑡 . Set the 𝑏 (𝑡) = 𝑘 for all 𝑡 and 𝑏 (𝑖) = 1

for all nodes 𝑖 . We claim that the maximum weight 𝑏-matching

can be converted to an optimal lookahead schedule by taking each

arm-timestep (𝑖, 𝑡) pair that is included in the maximum weight

𝑏-matching and pulling the arm 𝑖 at timestep 𝑡 . Constraints 1 and 2

are satisfied by the definition of weighted 𝑏-matching. Constraint 3

is satisfied because edge (𝑖, 𝑡) exists only if 𝑡 is in 𝑖’s action window.

Thus, the optimal solution to the weighted 𝑏-matching must be the

optimal solution to the lookahead problem.

To account for the additional frequency constraint that each arm

must receive at least one pull in the lookahead window, if possible,

a large constant can be added to all Whittle indices. The constant

will cause each arm to be pulled once, if possible, because it is much

larger than the increase in objective value that can be achieved by

shifting the pull time for any individual arm. □

The proof implies that this form of lookahead can be optimized

in strongly polynomial time. We remark that it is common in many

applications for each arm to be pulled one or zero times over the

next several timesteps.

In practice, it is convenient to solve this lookahead problem as

an integer program (IP). We can do so with 𝑁𝐿 binary variables 𝑎𝑖,𝑡
(where 𝐿 is the length of the action window) and𝑇 + 𝑁 constraints.

Because the polynomial tractability of weighted 𝑏-matching arises

from total unimodularity [21], the IP can be solved very quickly

via its LP relaxation. However, polynomial tractability is lost when

sufficiently complex minimum and maximum number of pulls are

added as additional constraints as the problem becomes equivalent

to weighted bipartite 𝑏-matching [4].

The IP can be extended to more complex cases, e.g., where there

are multiple pulls for each arm in the lookahead window. To modify

the Whittle index for a time 𝑡 ′ based on whether an arm pull at 𝑡

happened or not, we can add constraints of the form:

𝑤𝑖,𝑡 ′ ≤ 𝑀 (1 − 𝑎𝑖,𝑡 ) + 𝑎𝑖,𝑡𝑤
′
𝑖,𝑡 ′ (6)

where 𝑤 ′
𝑖,𝑡 ′ is the Whittle index at 𝑡 ′ for arm 𝑖 if it was pulled at

time 𝑡 . Note that Whittle indices will always decrease when a pull

happens under our assumptions that an action improves the state

of an arm. Thus, we can add 𝐿𝑁 additional constraints to allow for

an additional pull during the lookahead period.

5 EXPERIMENTAL STUDY
We study the impact of different planning policies on reward, con-

straint satisfaction and computation time, both in synthetic (Sec. 5.2)

and real data from CDPH (Sec. 5.3) domains. We describe the com-

pared policies in Sec. 5.1.

5.1 Planning Policies
We compare the policies introduced by this paperwith naive policies

and baselines from the literature. The two policies introduced by

this paper are:

• Time-Constrained RMAB (TCB) is a Whittle index heuris-

tic policy with action windows encoded into the MDP as

described in Sec. 4.2.

• Time-Constrained RMAB with IP Lookahead (IP) is
the MDP constraint encoding of Sec. 4.2, using the IP-based

lookahead of Sec. 4.4 rather than the Whittle index heuristic.

W

• Time-Constrained RMAB with IP Lookahead Equality
(IPE) is the MDP constraint encoding of Sec. 4.2, using the

IP-based lookahead of Sec. 4.4 rather than the Whittle index

heuristic and enforces that each arm is pulled exactly the

desired number of times in its action windows. The main

difference with IP policy is that IPE would reject the input if

it is impossible to satisfy all arms’ frequency constraints.

We use Gurobi 10.0.3 to solve the IP.

We include the following baseline and naive policies:

• Random Policy (RP): 𝑘 arms are selected randomly from

the arms that are currently eligible to be pulled (i.e., in their

action window). We use this as a lower bound on the reward

achievable by any policy.

• Risk-First Policy (RFP) A common strategy in food estab-

lishment inspections is to target those who are most likely to

fail inspections first [11, 12]. We simulate this by having the

agent pull the 𝑘 arms with smallest 𝑃
(0)
𝑖

[1, 1] arms which

are now in their action windows. Intuitively, these are the

arms that are most likely to transition into the failing state.

• Whittle-Index Policy (WIP) is the Whittle index heuristic

with the modification that the top 𝑘 arms that are within

their action windows are selected, an ad hoc modification

that guarantees that window constraints are satisfied.

The same method is used to compute Whittle indices for all

policies that require them. We simultaneously compute Whittle

indices for all states of each arm using binary search over subsidies
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Number of Arms

Policy Budget 10 50 100 1000 5000

RFP

9% / 17.79% 18.07% 20.27% 19.70%

15% 27.38% 19.92% 19.77% 22.44% 21.81%

20% 23.41% 19.49% 18.54% 20.84% 20.17%

25% 26.26% 17.62% 16.21% 18.69% 17.91%

30% 20.00% 14.88% 14.48% 16.20% 15.74%

TCB

9% / 19.43% 19.89% 22.13% 21.38%
15% 28.22% 21.41% 20.28% 22.86% 22.28%
20% 23.62% 19.45% 18.63% 21.18% 20.54%

25% 26.54% 17.67% 16.24% 18.78% 18.02%
30% 19.94% 15.01% 14.65% 16.29% 15.83%

WIP

9% / 18.98% 19.57% 21.93% 21.10%

15% 26.91% 20.71% 19.34% 22.51% 21.84%

20% 23.37% 19.23% 18.18% 20.65% 20.00%

25% 26.28% 17.34% 16.00% 18.47% 17.74%

30% 20.02% 14.80% 14.43% 16.12% 15.66%

IP

9% / 19.59% 19.36% 21.66% 20.85%

15% 29.12% 21.85% 20.61% 23.40% 22.66%

20% 23.22% 19.68% 18.95% 21.25% 20.61%
25% 26.13% 17.78% 16.28% 18.62% 17.86%

30% 20.04% 14.98% 14.49% 16.13% 15.70%

IPE

9% / / / / /

15% / / / / /

20% 23.22% 19.68% 18.95% 21.25% 20.61%
25% 26.13% 17.76% 16.28% 18.62% 17.86%

30% 20.04% 14.90% 14.47% 16.13% 15.69%

Table 1: Total rewards improvement achieved for each in pol-
icy in the synthetic data domain as the budget and number of
arms are varied. Results shown as percentage improvement
compared with RP under same RMABs and budgets. TCB, IP
or IPE performs best in all settings.

with the tolerance 10
−6
. All experiments are run on a single core

of AMD 3960X (4.5GHz).

5.2 Synthetic Domain
We begin with experiments using synthetic instances.

5.2.1 Data Preparation and Setup. In the synthetic domain, we gen-

erate 𝑃
(0)
𝑖

[0, 0] by sampling from Beta(𝛼 = 5, 𝛽 = 1) and 𝑃 (0)
𝑖

[1, 0]
by sampling from Beta(𝛼 = 1, 𝛽 = 5). Each simulation is run for 60

timesteps. Each arm has 2 action windows, one window is two

consecutive months, randomly selected, which then occurs ev-

ery 12 timesteps. One pull is allowed in each window. We vary

the number of arms in [10, 50, 100, 1000, 5000] and the budget in

[9%, 15%, 20%, 25%, 30%] per round. We start from 9% because at

least we need a budget of at least 8.33% of all arms to satisfy all

arms’ constraints.

5.2.2 Results. The total reward accrued for each policy is pre-

sented in Table 1 as percentage improvements relative to the reward

achieved by RP. The benefit of explicitly modeling constraints is

clearly seen—TCB, IP, or IPE achieves the highest reward improve-

ments in all settings. Intuitively, RFP and WIP act by identifying

Number of Arms

Policy Budget 10 50 100 1000 5000

RP

9% / 0% 0% 0% 0%

15% 0% 0% 0% 0% 0%

20% 0% 0% 0% 0% 0%

25% 0% 0% 0% 0% 0%

30% 0% 2% 1% 0% 0%

RFP

9% / 22% 30% 35% 33%

15% 30% 52% 65% 67% 67%

20% 90% 86% 86% 86% 85%

25% 90% 98% 98% 99% 99%

30% 100% 100% 100% 100% 100%

TCB

9% / 22% 28% 31% 29%

15% 40% 64% 62% 65% 66%

20% 90% 84% 84% 89% 90%

25% 90% 92% 95% 99% 98%

30% 100% 100% 100% 100% 100%

WIP

9% / 18% 25% 31% 29%

15% 30% 56% 60% 64% 63%

20% 80% 80% 81% 80% 81%

25% 80% 88% 91% 91% 92%

30% 90% 96% 98% 96% 96%

IP

9% / 32% 43% 42% 42%
15% 40% 68% 75% 75% 75%
20% 100% 100% 100% 100% 100%
25% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100%

IPE

9% / / / / /

15% / / / / /

20% 100% 100% 100% 100% 100%
25% 100% 100% 100% 100% 100%
30% 100% 100% 100% 100% 100%

Table 2: Percentage of arms which their all constraints(action
window and frequency) are satisfied. Under the same budget,
TCB+IP satisfies at most 15% more arms compared with RFP.
And also IP is the only policy which can satisfy all arms
under 20% budget.

arms that are at risk of being in the bad state. The result is, when

one of these risky arms enters its action window, it will always be

pulled immediately. This is disruptive to the objective of pulls as

many impactful arms as possible—it may cause other pulls to be

wasted as arms exited their action window.

The IP lookahead is particularly effective in increasing coverage

and enforcing coverage constraints. Table 2 compares the cover-

age (i.e., the percent of arms pulled in a year) for all policies. IP

substantially increases coverage, even when there is no explicit

coverage constraint, by avoiding conflicts between arms. IPE adds

a frequency constraint requiring that each arm is pulled exactly de-

sired times each year. Once the budget is large enough to allow for

full coverage, it is achieved in every instance. Furthermore, reward

is not decreased as a result of adding this constraint.

Despite a budget of as little as 8.33% providing enough pulls in

principle, at least 20% is needed in order to satisfy the coverage

constraint due to the constraint structure. Larger instances require
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Policy Time (sec)

RFP 163.52±0.39

WIP 172.02±1.29

TCB 2599.60±17.82

IP (Whittle computation) 2598.86±10.68

IP (Optimization) 119.51±1.19

Table 3: The average running time in seconds for a 5000-
arm RMAB over 12 steps. For IP, we separate time spent on
Whittle index computation and lookahead optimization. The
largest computational costs come from the larger MDP that
must be solved when the constraint encoding is introduced.

slightly less than smaller ones due to the law of large numbers, but

the impact of this is more limited than we expected.

5.2.3 Algorithm Computational Costs. Whittle index computation

for one state is around 0.005 s. Table 3 compares running times

for the tested policies. Our policies consume around an order of

magnitude more computational time than benchmarks due primar-

ily to the need to compute Whittle indices for MDPs with more

states. Theoretically faster algorithms for Whittle index computa-

tion exist and could decrease this difference. We experimented with

the method of [6], but found that existing code fails on some test

instances.

RAM consumption is low for all policies. IP consumes around

700MB RAM when running on a 5000-arm instance, TCB consumes

about 500MB, and WIP consumes less than 200MB.

5.3 Food Establishment Inspection Domain
Using inspection data from the Chicago Data Portal [5], we imple-

ment a realistic RMAB setting.

5.3.1 Data and Setup. From 2010, CDPH has published every food

establishment inspection result on the Chicago Data Portal [5].

The Food Inspection Dataset is a tabular dataset with 17 attributes

for each establishment including license number, address, etc. The

inspection results are shown in the “Violations” column: 0 means

no violations and pass, 1 means violations appear and 2 means pass

with conditions. In the experiment, both 0 and 2 are merged into a

single good state and 1 is the bad state.

To create a realistic instance, we must infer the transition prob-

abilities from the inspection trajectories for each arm. We limit

ourselves to the 6750 establishments with at least 10 inspection

records and use these inspection results to infer the probabilities

in the transition matrix. We seek to compute the maximum like-

lihood transition matrix 𝑃𝑖 for each establishment by minimizing

the negative log-likelihood:

𝑇−1∑︁
𝑡=0

log 𝑃
(𝑎𝑖,𝑡 )
𝑖

[𝑠𝑖,𝑡 , 𝑠𝑖,𝑡+1], (7)

where 𝑃
(𝑎𝑖,𝑡 )
𝑖

[𝑠𝑖,𝑡 , 𝑠𝑖,𝑡+1] is the entry of the transition matrix cor-

responding to the transition between the states 𝑠𝑖,𝑡 and 𝑠𝑖,𝑡+1 that
is observed, under the observed action 𝑎𝑖,𝑡 . Due to the partially

observable nature of the problem, we only receive observations

from establishments when they are inspected. Instead, we minimize

Policy RP RFP TCB WIP IP IPE

Reward 309555 317034 318609 317038 318601 318601

Cover 0% 89% 91% 89% 100% 100%
Months 47.12 48.03 48.53 48.01 48.51 48.51

Table 4: Rewards and coverage on 6750 establishments from
Chicago, with a budget of 10% per timestep. Similarly to the
synthetic data case, we see much TCB and IP perform best
and IP/IPE is able to cover 100%, 10% higher than others.
Months mean the number of average months establishment
stay in passing state (out of 60) in the real data experiments.

the difference between the belief induced by the transition matrix

and the observed state for each pair of consecutive inspections:∑︁
𝑗

(𝑠𝑖,𝑡 (𝑖, 𝑗 ) [𝑃
(0)
𝑖

]𝑡 (𝑖, 𝑗+1)−𝑡 (𝑖, 𝑗 ) − 𝑠𝑖,𝑡 (𝑖, 𝑗+1) )2, (8)

where 𝑗 indexes consecutive inspections, 𝑡 (𝑖, 𝑗) is the timestep of

the 𝑗th inspection of arm 𝑖 . We minimize this difference using

Nelder-Mead [18].

In these experiments, we have 6750 arms, 60 timesteps, and

a budget of 10% per timestep. We use the same random action

windows of two consecutive steps per year as in the synthetic data.

5.3.2 Results. We compare the rewards achieved by all policies

in Table. 4 relative to the reward achieved by RP. The outcome is

similar as in the synthetic data case—we find TCB, IP and IPE have

larger impacts on reward than RFP and WIP. IP and IPE can achieve

100% coverage, over 10% higher than others.

We can interpret the reward values in terms of the expected num-

ber of months each establishment stays in the inspection-passing

state over the 60 timesteps in the last row of Table 4. We see that

IP and TCB keep establishments in the passing state for about 1.4

additional months on average over the five years, 0.5 months longer

than WIP or RFP. This supports our contention that explicitly mod-

eling window constraints can have a substantial impact on practical

RMAB settings.

The impact of all policies is less in the real data case than in

the synthetic because arms are more likely to stay in the passing

state without intervention. Some of this difference is likely due to

modeling—because we limit the data to establishments with at least

10 inspections, we suspect that the modeled establishments, which

have survived for longer, have higher pass rates than the overall

population.

6 CONCLUSIONS
We present an RMAB-based method to solve scheduling problems

with frequency and timing restrictions. To the best of our knowl-

edge, ours is the first RMAB study to optimize scheduling problems

under such constraints. Both synthetic data results and those using

real food inspection data from CDPH suggest that our method for

explicitly modeling constraints is critical for RMABs to have an

impact in this setting. We hope our work paves the way for apply-

ing RMABs to other critical infrastructure maintenance and public

service problems under constraints.
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