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ABSTRACT
When resources are scarce, an allocation policy is needed to decide

who receives a resource. This problem occurs, for instance, when al-

locating scarce medical resources and is often solved using modern

ML methods. This paper introduces methods to evaluate index-

based allocation policies—that allocate a fixed number of resources

to those who need them the most—by using data from a random-

ized control trial. Such policies create dependencies between agents,

which render the assumptions behind standard statistical tests in-

valid and limit the effectiveness of estimators. Addressing these

challenges, we translate and extend recent ideas from the statistics

literature to present an efficient estimator and methods for comput-

ing asymptotically correct confidence intervals. This enables us to

effectively draw valid statistical conclusions, a critical gap in previ-

ous work. Our extensive experiments validate our methodology in

practical settings, while also showcasing its statistical power. We

conclude by proposing and empirically verifying extensions of our

methodology that enable us to reevaluate a past randomized control

trial to evaluate different ML allocation policies in the context of a

mHealth program, drawing previously invisible conclusions.

KEYWORDS
causal inference, scarce resource allocation, policy evaluation, ran-

domized control trials, public health, social good

1 INTRODUCTION
In treatment allocation, we have a limited number of intervention

resources. The challenge that arises is to devise an allocation policy

that decides to whom we allocate them to maximize social wel-

fare. Treatment allocation finds applications in various scenarios,

for instance, when (i) allocating scarce medical resources such as

medication [3, 8] or screening tools [4, 9, 24, 25] (ii) scheduling

maintenance or inspection visits [12, 27, 47], or (iii) allocating spots

in support programs [28, 30, 40]. Accordingly, treatment allocation

is a common problem in statistics and economics [5, 22]. More

recently, ML methods have started to be increasingly used for treat-

ment allocation and thus the problem has gained popularity in

the ML community [4, 11, 19, 21, 23, 29, 48]. In resource-limited

settings, allocations are commonly made based on individualized

measures of risk [18, 28, 32] or treatment effects [7, 23, 41, 42], often

predicted using modern ML techniques. Both of these and many

other strategies can be captured by so-called index-based alloca-

tion policies. Given a fixed number of resources, these policies first
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compute an index (e.g., risk) for each individual, and subsequently

allocate the resources to the individuals with the lowest index. We

present and evaluate methods for causal inference for the effective-

ness of index-based allocation policies using randomized control

trials (RCTs), the gold standard for analyzing treatment effects [13].

While our work is generally applicable and relevant to a wide

range of application domains, it is motivated in particular by a

deployed index-based allocation policy in a mobile health program

organized by the Indian NGO ARMMAN [30, 37, 40, 41]. ARM-

MAN’s mMitra program provides critical preventive care informa-

tion to enrolled pregnant women and mothers of infants through

automated voice messages. To promote engagement, each week, a

limited number of beneficiaries can be called by health workers to

provide them with additional information and guidance.

Mate et al. [30] and Verma et al. [40] conducted RCTs to evaluate

the effectiveness of index-based allocation policies to allocate live

service calls in mMitra based on different ML paradigms. Evaluating

these trials turns out to be a significant research challenge. This is

because whether or not an individual gets selected for treatment

by a policy depends on the other beneficiaries in the population.

The resulting dependence between beneficiaries renders central

assumptions behind standard statistical tests invalid and leads to

the low statistical power of estimators (see Section 3.2). Mate et al.

[30] and Verma et al. [40] note that their methodology (to which we

refer as the base estimator; see Section 3.1) comes without rigorous

empirical evidence or theoretical guarantees on the validity of

computed confidence intervals and drawn statistical conclusions.

Addressing this gap, we are the first to provide the necessary tools to
effectively draw reliable statistical conclusions about the quality of
index-based allocation policies by describing a new estimator together
with customized statistical inference techniques.

In more detail, the contributions of the paper are as follows. In

Section 3, we describe themethodology used byMate et al. [30] and

Verma et al. [40]. Moreover, we describe recent work by Imai and Li

[14] from the statistics literature, on top of which many of our ideas

and results are built. In Section 4.1, translating ideas from Imai

and Li [14], we present the subgroup estimator, which computes

the average treatment effect by comparing those who are selected

by the policy in the policy arm of the RCT to those the policy

would have selected in the control arm of the RCT. In Section 4.2,
using results from Imai and Li [14], we conclude the asymptotic

normality of the subgroup estimator and describe new methods for

computing asymptotically valid confidence intervals for evaluating

and comparing policies. We also argue why standard tests still

produce good results for the subgroup estimator. In Section 4.3, we



establish the asymptotic normality of the base estimator that allows

us to compute asymptotically valid confidence intervals using a

new proof strategy via empirical process theory [39].

In our experimental Section 5, we use synthetic and real-world

data to build various simulators that simulate an individual’s behav-

ior as a Markov Decision Process. We successfully verify that our

asymptotic theoretical guarantees regarding the validity of confi-

dence intervals for our estimators empirically extend to a variety of

practical cases. Moreover, we demonstrate that the subgroup esti-

mator has typically a significantly higher statistical power than the

base estimator, as we find that computed confidence intervals are

usually more than halved. In fact, the difference between the two

can be even more pronounced, for instance when the budget is very

small the difference gets as large as a factor of 8. This finding high-

lights that our methodology allows for a more flexible study design:

As the base estimator has a very low statistical power in case only

a few treatments are allocated, Verma et al. [40] distributed many

resources in their field trial, a strategy that is both expensive (and

sometimes infeasible) and proves very challenging in the evaluation

stage as it reduces the observed average treatment effect. These

are problems that largely disappear when using the new subgroup

estimator.

Lastly, in Section 6, we turn to the field trial conducted by Verma

et al. [40]. For this, we need to extend our methodology, e.g., ac-

counting for the sequential allocation of resources and covariate

correction, beyond the case covered by our theoretical guarantees

from Section 4. We empirically verify the validity of computed con-

fidence intervals and reevaluate the field trial conducted by Verma

et al. [40]. We confirm previous conclusions obtained using meth-

ods whose reliability was unclear to the authors [40]. In addition,

we also identify previously hidden insights by making use of the

increased flexibility and statistical power of the subgroup estimator.

2 PRELIMINARIES
Let 𝐴 = {0, 1} be the set of actions where 1 is the active action

(treatment
1
given) and 0 is the passive action (no treatment given).

An agent 𝑖 ∈ [𝑛] is characterized by covariates x𝑖 ∈ X and a reward

function 𝑅𝑖 : 𝐴 → R that returns the reward generated by the

agent given the action assigned to it.
2
Agents are drawn i.i.d. from

a probability distribution 𝑃 defined over the space of covariates

and reward functions X × (𝐴 → R). We write (x𝑖,𝑛, 𝑅𝑖,𝑛) ∼ 𝑃 to

denote a set [𝑛] of agents being sampled i.i.d. from the probability

distribution 𝑃 and X𝑛 := (x𝑖,𝑛)𝑖∈[𝑛] to denote the covariates of

these 𝑛 agents. If not stated otherwise, expectation and probabilities

in this paper are over groups of 𝑛 agents, i.e., (x𝑖,𝑛, 𝑅𝑖,𝑛) ∼ 𝑃 .
An allocation policy 𝜋 gets as input the covariates X𝑛 ∈ X𝑛

of 𝑛 agents and a treatment fraction 𝛼 and returns ⌈𝛼𝑛⌉ agents
to which the active action is applied.

3
We denote as 𝐽

𝜋 (X𝑛,𝛼 )
𝑖

the

indicator variable that denotes whether agent 𝑖 ∈ [𝑛] gets assigned
a treatment as per policy 𝜋 , i.e., 𝐽

𝜋 (X𝑛,𝛼 )
𝑖

= 1 if 𝑖 ∈ 𝜋 (X𝑛, 𝛼)
and 0 otherwise. An index-based allocation policy 𝜋Υ is defined

1
We use the terms treatment and intervention interchangeably.

2
This is equivalent to the Nayman-Rubin potential outcomes model [15].

3
As 𝑛 is typically fixed, we could alternatively also specify the number of agents

receiving a treatment. Both formulations are equivalent, but the fraction formulation

will prove advantageous in the presentation of our theoretical analysis in Section 4.

by a function Υ : X → R mapping covariates to an index. Given

X𝑛 ∈ X𝑛 and a treatment fraction 𝛼 ∈ [0, 1], 𝜋Υ returns the ⌈𝛼𝑛⌉
agents with the lowest index Υ(x𝑖 ). Moreover, givenX𝑛 ∈ X𝑛 and a

threshold 𝜆 ∈ R, let 𝜐Υ (X𝑛, 𝜆) return the set of agents 𝑖 ∈ [𝑛] with
an index value Υ(x𝑖 ) smaller or equal to 𝜆 (note that this policy

does not satisfy the definition of an allocation policy, as the number

of agents that receive an active action is not fixed). To highlight

this difference, we refer to the policy that acts on everyone in 𝜐Υ as

a threshold policy.

Statistics Notation. We now introduce terminology necessary

to formalize our methodology. An estimand is the quantity we

want to measure and an estimator is a value “approximating” the

estimand, computed from the available observed data using some

procedure. Estimands’ names will always involve a 𝜏 , while esti-

mators’ names will always involve a 𝜃 . A sequence of random vari-

ables (𝐴𝑛)𝑛>0 with cumulative distributions (𝐺𝑛 (𝑎))𝑛>0
converges

in distribution to a random variable 𝐴 with cumulative distribution

𝐺 if lim𝑛→∞𝐺𝑛 (𝑎) = 𝐺 (𝑎) for all 𝑎 ∈ R at which 𝐺 is continu-

ous, in which case we write 𝐴𝑛
𝑑→ 𝐴 (note that in the context of

this paper, 𝑛 will typcially be the number of samples we observe).

A sequence (𝐴𝑛)𝑛>0 converges in probability to 𝐴 (𝐴𝑛
𝑝
→ 𝐴) if

lim𝑛→∞ P( |𝐴𝑛 − 𝐴| ≥ 𝜖) = 0 for all 𝜖 > 0. An estimator 𝜃𝑛 of

an estimand 𝜏𝑛 is (weakly) consistent if 𝜃𝑛 − 𝜏𝑛
𝑝
→ 0. We denote

as N(𝜇, 𝜎2) the normal distribution with mean 𝜇 and variance 𝜎2
.

Let 𝑞𝛼 be the 𝛼-quantile of the cumulative distribution function

𝐹Υ (𝜆) = P(x,𝑅)∼𝑃 [Υ(x) ≤ 𝜆] of indices, i.e., the smallest number so

that an expected 𝛼-fraction of agents have an index below 𝑞𝛼 .

3 CHALLENGES AND PREVIOUS WORK
We describe previous approaches to evaluating index-based allo-

cation policies (Section 3.1) and why they fall short to address the

problem (Section 3.2). In Section 3.3, we describe the work of Imai

and Li [14], which we will refer to throughout the rest of the paper.

3.1 Previous Approaches and RCT Design
Due to resource scarcity, our basic setup which has also been used

in previous work [30, 31, 40] assumes a modified RCT design, where

treatment is allocated according to the evaluated allocation policy:

We have access to the results of a randomized control trial with

a policy arm (p) containing 𝑛 agents (x𝑝
𝑖
, 𝑅
𝑝

𝑖
)𝑖∈[𝑛] sampled i.i.d.

from 𝑃 on which we run our policy 𝜋 . As the outcome, we observe

(x𝑝
𝑖
, 𝑅
𝑝

𝑖
(𝐽𝑝
𝑖
))𝑖∈[𝑛] , where 𝐽

𝑝

𝑖
:= 𝐽

𝜋 (X𝑝
𝑛,𝛼 )

𝑖
. Moreover, we have access

to a control arm (c) of𝑛 agents (x𝑐
𝑖
, 𝑅𝑐
𝑖
)𝑖∈[𝑛] sampled i.i.d. from 𝑃 for

which we observe (x𝑐
𝑖
, 𝑅𝑐
𝑖
(0))𝑖∈[𝑛] . Note that for both the control

and policy arm we naturally can only observe the agent’s reward

according to the action applied to them (e.g., 𝑅(0) for all agents in
the control arm) while the counterfactual remains unobserved.

4

Previous work [30, 31, 40] has evaluated these RCTs by estimat-

ing the average benefit that an agent derives from being a mem-

ber of the policy arm instead of the control arm (independent of

whether agents have been selected by the allocation policy or not).

Accordingly, they estimate policies’ effectiveness as the difference

4
Wewill occasionally also feature standard RCTs where there is a treatment arm where

everyone gets treated, in contrast to the policy arm in our setting.



between the expected reward generated by an (arbitrary) agent

from the policy arm compared to the expected reward generated

by an (arbitrary) agent from the control arm:

𝜏base

𝑛,𝛼 (𝜋) = 1

𝑛

©«E
∑︁
𝑖∈[𝑛]

𝑅𝑖 (𝐽𝜋 (X𝑛,𝛼 )
𝑖

) − E
∑︁
𝑖∈[𝑛]

𝑅𝑖 (0)ª®¬
= E𝑅1 (𝐽𝜋 (X𝑛,𝛼 )

1
) − E𝑅1 (0)

To estimate 𝜏base

𝑛,𝛼 (𝜋), they compute the difference in the observed

generated reward of all agents in the policy arm compared to all

agents in the control arm:

˜𝜃base

𝑛,𝛼 (𝜋) = 1

𝑛

©«
∑︁
𝑖∈[𝑛]

𝑅
𝑝

𝑖
(𝐽𝑝
𝑖
) −

∑︁
𝑖∈[𝑛]

𝑅𝑐𝑖 (0)
ª®¬ (1)

For the sake of consistency with the next section, we rescale
˜𝜃base

𝑛,𝛼

and let 𝜃base

𝑛,𝛼 (𝜋) := 𝑛
⌈𝛼𝑛⌉

˜𝜃base

𝑛,𝛼 (𝜋) be the base estimator.

3.2 Shortcomings and Challenges
The methodology used in previous work has two main shortcom-

ings: First, the base estimator 𝜃base
suffers from low statistical

power, i.e., the estimator is quite “noisy” leading to large confi-

dence intervals and problems with distinguishing policies. Second,

as acknowledged by Mate et al. [30] and Verma et al. [40] there

are no theoretical guarantees or empirical evidence that computed

confidence intervals and drawn statistical conclusions are valid.

To understand why these problems occur, let us consider the

class of threshold policies introduced in Section 2, which make

independent decisions for every individual. For these threshold

policies standard methods for statistical inference, which rely on

the central limit theorem (CLT), can be used. The CLT says that

the sample mean of independent observations drawn from some

(arbitrary) distribution (as generated, e.g., by a threshold policy

in an RCT) converges to a normal distribution. Estimates of this

normal distribution’s mean 𝜇 and variance 𝜎 can then be used for

estimating the variance of the estimator and for instance to con-

struct valid confidence intervals. However, for resource allocation

policies, the samples that we observe in the policy arm are no longer

independent because an agent’s treatment and thereby its observed

reward depends on the index values of other agents. This renders

the standard central limit theorem inapplicable. Consequently, sta-

tistical tests such as Welch’s z-test, which rely on the CLT, are no

longer guaranteed to produce accurate statistical conclusions. Thus,

the challenge arises of how to compute valid confidence intervals

and p-values for policy evaluation.

Another consequence of the dependence between agents is that

if we apply an allocation policy to a group of 𝑛 agents, we only

observe a single independent group sample; slightly changing the

composition of the group could change the treatment allocation

and thereby also the observed rewards (in contrast, for threshold

policies, we would derive 𝑛 fully independent samples). In light of

the resulting lack of independent samples, we face the challenge

of constructing estimators that do not suffer from low statistical

power needed to draw statistically significant conclusions.

3.3 Work by Imai and Li [14]
We discuss recent work by Imai and Li [14]. The work is positioned

differently and does not make any explicit connections to allocation

policies and treatment allocation, but upon closer inspection turns

out to be closely related.

There is a growing body of work on estimating conditional het-

erogeneous treatment effects (CATEs) of individuals based on their

covariates [17, 23, 42] with wide applications ranging from making

decisions on patients in precision medicine to making predictions

how a treatment performs in a population with a different covariate

distribution than observed ones. While most statistics works in this

direction have focused on designing policies to decide which CATE

value should be sufficient to receive treatment [2, 22, 26, 36, 49], few

also consider inference and estimation [14, 35, 46]. However, from

this rich body of works, only the recent work of Imai and Li [14] is

upon closer inspection closely related to our problem, as they in

contrast to a majority of other works consider average treatment

effects in groups of agents (and not only for individuals).

Specifically, Imai and Li [14] analyze how to estimate the aver-

age treatment effect in groups of agents with similar CATEs. They

assume access to a standard RCT where everyone in the treatment

arm receives treatment. Translated to our setting, their method-

ology applies to estimating the average effect a treatment has on

agents with an index value below 𝑞𝛼 , i.e., those agents who belong

to the expected 𝛼-fraction of agents with the lowest index:

𝜏
q

𝛼 (Υ) := E(x,𝑅)∼𝑃 [𝑅(1) − 𝑅(0) | Υ(x) ≤ 𝑞𝛼 ]
To measure this estimand, they take the difference between the

summed reward of the 𝛼-fraction of agents in the treatment arm

with the lowest indices and the summed reward of the 𝛼-fraction

of agents in the control arm with the lowest indices. Using our

notation, their estimator, which we call the subgroup estimator, is
equivalent to the following:

𝜃SG

𝑛,𝛼 (𝜋Υ) =
1

⌈𝛼𝑛⌉
©«

∑︁
𝑖∈𝜋Υ (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1) −

∑︁
𝑖∈𝜋Υ (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

ª®¬ (2)

They show in Lemma S2 appearing in Appendix S2 of Imai and Li

[14] that 𝜃SG

𝑛,𝛼 (𝜋Υ) converges in expectation at a

√
𝑛-rate to 𝜏

q

𝛼 (Υ):
Lemma 3.1 (informal corollary of Lemma S2 in [14]). Under very
mild assumptions, lim𝑛→∞

√
𝑛

(
𝜏

q

𝛼 (Υ) − E[𝜃SG

𝑛,𝛼 (𝜋Υ)]
)
= 0.

Moreover, they also show how to reason about the asymptotic

variance of their estimator using the following result:

Theorem 3.2 (informal corollary of Theorem 2 in [14]). Under
very mild assumptions,

√
𝑛

(
𝜃SG

𝑛,𝛼 (𝜋Υ) − 𝜏
q

𝛼 (Υ)
)
𝑑→ N(0, 𝜎2

asym)

for some 𝜎2

asym ≥ 0. We can consistently estimate 𝜎2

asym as �̂�2

asym
from the results of a standard RCT.

4 METHODOLOGY
We present the subgroup estimator for our setting (Section 4.1) and

describe howwe can compute asymptotically valid confidence inter-

vals for it (Section 4.2). Lastly, in Section 4.3, we use an alternative

proof to derive analogous results for the base estimator 𝜃base
.



4.1 Subgroup Estimator
We describe how and why a variant of the estimator used by Imai

and Li [14] to evaluate CATEs, whichwe call the subgroup estimator

(see Equation (2)), can be used in our setting.

We propose a new estimand that quantifies the effectiveness of a

policy by measuring the average effect of a treatment as prescribed

by the policy. This estimand will turn out to be equivalent—up to

rescaling—to the base estimand 𝜏base
. Our estimand makes it clear

how our task connects to Equation (2) and explicitly quantifies the

effect of one treatment, as compared to the base estimand 𝜏base
that

quantifies the effect of being an agent in the policy group (that

might or might not receive treatment). More concretely, for an

allocation policy 𝜋 , a treatment fraction 𝛼 , and a group size 𝑛 ∈ N,
we define 𝜏new

𝑛,𝛼 (𝜋) to be the expected additional reward generated

by an intervention allocated according to policy 𝜋 :

𝜏new

𝑛,𝛼 (𝜋) :=
1

⌈𝛼𝑛⌉ E
∑︁

𝑖∈𝜋 (X𝑛,𝛼 )
(𝑅𝑖 (1) − 𝑅𝑖 (0)) (3)

𝜏new

𝑛,𝛼 (𝜋) is—up to rescaling—equivalent to the estimand 𝜏base

𝑛,𝛼 (𝜋)
used in previous work:

𝜏base

𝑛,𝛼 (𝜋) = 1

𝑛

©«E[
∑︁
𝑖∈[𝑛]

𝑅𝑖 (𝐽𝜋 (X𝑛,𝛼 )
𝑖

) −
∑︁
𝑖∈[𝑛]

𝑅𝑖 (0)]ª®¬
=

1

𝑛
E [

∑︁
𝑖∈𝜋 (X𝑛,𝛼 )

(𝑅𝑖 (1) − 𝑅𝑖 (0)) +
∑︁

𝑖∉𝜋 (X𝑛,𝛼 )
(𝑅𝑖 (0) − 𝑅𝑖 (0))] =

⌈𝛼𝑛⌉
𝑛

𝜏new

𝑛,𝛼 (𝜋)

The reason for this equivalence is that—in expectation— agents on

which we did not act in the policy arm cancel out with agents in the

control arm. Nevertheless, in the base estimator 𝜃base
(which simply

drops the expectation from 𝜏base
), these agents will introduce noise,

as they will influence the observed summed reward of the two

arms, i.e., the two sums in 𝜃base
(cf. Equation (1)), differently. This

motivates us to “remove” them for the estimation. The subgroup
estimator allows us to do this. We separately estimate the expected

reward of agents selected by the policy when treated and when not

treated. For the first part, we can use the agents selected by our

policy in the policy arm (for which we observe 𝑅𝑖 (1)) and for the

second part the agents that would have been selected by our policy

in the control arm (for which we observe 𝑅𝑖 (0)). This results in the

subgroup estimator 𝜃SG
from Equation (2):

𝜃SG

𝑛,𝛼 (𝜋) =
1

⌈𝛼𝑛⌉
©«

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1) −

∑︁
𝑖∈𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

ª®¬ (4)

In fact, it is easy to see that the expected value of the subgroup

estimator 𝜃SG
is equal to our estimand 𝜏new

:

E[𝜃SG

𝑛,𝛼 (𝜋 ) ] = 1

⌈𝛼𝑛⌉
©«E

∑︁
𝑖∈𝜋 (X𝑛 ,𝛼 )

𝑅𝑖 (1) − E
∑︁

𝑖∈𝜋 (X𝑛 ,𝛼 )
𝑅𝑖 (0)

ª®¬ = 𝜏new

𝑛,𝛼 (𝜋 ) (5)

Intuitive Differences between Base and Subgroup Estimator. 5 The
base estimator 𝜃base

treats the RCT arms as indecomposable units

and estimates the effect of treatments (allocated according to pol-

icy 𝜋 ) on the complete policy arm through a comparison with the

5
Note that the work of Imai and Li [14] does not discuss any intuition behind the

subgroup estimator 𝜃SG
. Moreover, the base estimator 𝜃base

naturally does not appear

in their work, as it cannot be used for the task studied by them.

complete control arm. In contrast, the idea of the subgroup esti-

mator 𝜃SG
is to estimate the effect of treatments on the treated

agents by approximating their unobserved counterfactual behav-

ior (when they did not receive treatment) using the control arm.

For this, we view each agent as an individual sample and com-

pare the agents that received treatment in the policy arm to the

agents that would have been assigned treatment by the policy in

the control arm. Thus, in contrast to the base estimator 𝜃base
, the

subgroup estimator 𝜃SG
only takes into account the agents that

are “relevant” to our policy. Specifically, 𝜃SG
ignores the difference∑

𝑖∉𝜋 (X𝑝
𝑛,𝛼 ) 𝑅

𝑝

𝑖
(0) −∑

𝑖∉𝜋 (X𝑐
𝑛,𝛼 ) 𝑅

𝑐
𝑖
(0) that intuitively does not pro-

vide us with any insights regarding the policy and only adds noise

to the estimator.

Base, Subgroup, and Hybrid Estimator. The subgroup estimator

has a significantly lower variance than the base estimator in our

experiments from Section 5. However, as we will explain in Ap-

pendix A.1 this is not a formal guarantee, as there are corner cases

where the situation is reversed. If one wants to be extra careful

to avoid these situations, we present in Appendix A.2 a hybrid

estimator that combines the two, thereby blending their strengths.

In our experiments from Section 5, the hybrid estimator performs

always extremely similarly to the subgroup estimator.

RCT Design. Recall that the work of Imai and Li [14] assumed a

standard RCT design where everyone in the treatment arm receives

a treatment. However, if resources are scarce this might not be

feasible. This is why previous work [30, 40] has used customized

RCTs where only an 𝛼 fraction of the agents in the policy arm—as

determined by the policy—get treated. Notably, the base estimator

𝜃base
can only be applied after such a customized RCT has been

conducted. The subgroup estimator 𝜃SG
offers a much more flexible

approach: We can use it in both settings and in fact for any RCT

where all agents that would have been selected by the policy in the

treatment group received treatment. This allows us for instance

to run a standard RCT where everyone in the treatment arm gets

treated and only specify afterward the index policy whose effec-

tiveness we want to evaluate. We can even use one standard RCT to

get an idea of the effectiveness of different index-based allocation

policies or different treatment fractions 𝛼 .

Policy comparison. While the estimand and estimator presented

in this section quantify the effectiveness of a single policy, they

can also be used to compare two policies against each other. A

naive approach is to use our machinery presented in Section 4.2 to

compute (100 − 𝛽)%-confidence intervals for both policies. In case

they do not overlap, we can conclude that one policy outperforms

the other with probability (100 − 2𝛽)% by union bound. However,

there is also a better approach described in Section 4.2.

Relation to Mate et al. [31]. To the best of our knowledge, the

work of Mate et al. [31] is the only other paper explicitly dealing

with casual inference for index-based allocation policies. They pro-

vide techniques for reducing the variance of estimators; however,

their methods do not allow for the computation of confidence in-

tervals that are necessary for hypothesis testing. In Appendix A.4,

we present a detailed discussion of how the subgroup estimator

𝜃SG
relates to the estimator of Mate et al. [31], essentially arguing



that both lead to a similar variance reduction in our setting, while

in contrast to their work, our estimator admits a much simpler

formulation and comes with (valid) confidence intervals.

4.2 Inference for Subgroup Estimator
We describe how we can do asymptotically correct inference for the

subgroup estimator 𝜃SG
. This section and the next mostly describe

ideas, with details and full proofs appearing in Appendices B and F.

The main ingredient for doing inference with the subgroup es-

timator 𝜃SG
is to establish that it is asymptotically normal with

respect to our estimand 𝜏new
, i.e., the difference between the estima-

tor and estimand is distributed according to a normal distribution.

Estimating the variance of this normal distribution then allows us,

for instance, to reason about the probability that the error of the

estimator is above a certain threshold (this cannot be achieved by

merely knowing that the estimator in expectation converges to the

estimand, see Equation (5)). To establish this result, the general

proof idea is to first show that the subgroup estimator 𝜃SG

𝑛,𝛼 (𝜋Υ)
is asymptotically normal with respect to 𝜏

q

𝛼 (Υ), i.e., the average
intervention effect of treatments when prescribed to agents with

index smaller equal 𝑞𝛼 . Subsequently, one can show that 𝜏
q

𝛼 (Υ)
converges “fast” to our estimand 𝜏new

𝑛,𝛼 (𝜋Υ) to conclude the result.

To implement this strategy, we use the results from Imai and Li

[14] as discussed in Section 3.3. It is sufficient to combine Lemma 3.1

and Theorem 3.2 with the simple observation from Equation (5) that

E[𝜃SG

𝑛,𝛼 (𝜋)] = 𝜏new

𝑛,𝛼 (𝜋): Essentially, Lemma 3.1 implies that we can

“replace” 𝜏
q

𝛼 (𝜋) by E[𝜃SG

𝑛,𝛼 (𝜋)] = 𝜏new

𝑛,𝛼 (𝜋) in Theorem 3.2. Formally,

using Section 2.2 of Imai and Li [14], we can conclude that:

Theorem 4.1. Under very mild assumptions,
√
𝑛

(
𝜃SG

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→ N(0, 𝜎2

SG)

for some 𝜎2

SG ≥ 0. 𝜎2

SG can be consistently estimated as

�̂�2

SG =
1

𝛼2 (𝑛 − 1)
∑︁

𝑖∈𝜋 (X𝑝𝑛,𝛼 )

©«𝑅
𝑝

𝑖
(1) −

∑︁
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𝑝

𝑖
(1)
𝑛

ª®®¬
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𝛼2 (𝑛 − 1)
∑︁

𝑖∈𝜋 (X𝑐𝑛,𝛼 )
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Using Slutky’s theorem, we can conclude from Theorem 4.1 that

√
𝑛(𝜃SG

𝑛,𝛼 (𝜋 )−𝜏new

𝑛,𝛼 (𝜋 ) )/
√︃

ˆ𝜎2

SG

𝑑→ N(0, 1). (6)

Confidence Intervals. From Equation (6), we can derive a formula

for asymptotically correct 𝛽-confidence interval of 𝜏new

𝑛,𝛼 (𝜋) as

𝐼 = [𝜃SG

𝑛,𝛼 (𝜋) − 𝑍
1− 𝛽

2

√︃
�̂�2

SG
/𝑛, 𝜃SG

𝑛,𝛼 (𝜋) + 𝑍
1− 𝛽

2

√︃
�̂�2

SG
/𝑛] (7)

where 𝑍𝛾 is the 𝛾 quantile of N(0, 1). Asymptotically correct here

means that P(𝜏new

𝑛,𝛼 (𝜋) ∈ 𝐼 )→1 − 𝛽 . Note that the rate-
√
𝑛 conver-

gence established in Theorem 4.1 indicates that P(𝜏new

𝑛,𝛼 (𝜋) ∈ 𝐼 )
should “quickly” converge to 1 − 𝛽 and indeed our experiments

confirm that the confidence interval is approximately valid already

for a limited number of samples in different realistic settings.

P-Values. Theorem 4.1 and Equation (6) also allow us to com-

pute asymptotically valid p-values. Let Φ(𝑥) be the cumulative

distribution of N(0, 1), i.e., Φ(𝑥) is the probability that a sam-

ple from N(0, 1) is smaller equal to 𝑥 . Assume for instance that

we wanted to test the null hypothesis 𝜏new

𝑛,𝛼 (𝜋) ≤ 0, then 𝑝 =

1 − Φ
(√
𝑛𝜃SG

𝑛,𝛼 (𝜋 )/
√︃
�̂�2

SG

)
will be an asymptotically valid p-value, i.e.,

P(𝑝 ≤ 𝛽)→𝛽 .

Welch’s 𝑧-test. Our variance estimator �̂�2

SG
and the above-derived

confidence intervals are similar to the results of the standard

Welch’s 𝑧-test: We would recover the result produced by Welch’s

𝑧-test if we deleted the third term in �̂�2

SG
, which is always negative.

In line with this, Welch’s 𝑧-test outputs conservative confidence

intervals that are approximately valid in our experiments.

Policy Comparison (cont’d). We can use our results from this

section to more effectively compare the effectiveness of two policies

𝜋1 and 𝜋2 with respective variance estimates �̂�2

1,SG
and �̂�2

2,SG
from

Theorem 4.1. Assuming that both policies were evaluated in fully

independent RCT, the asymptotically correct 𝛽-confidence interval

of 𝜏new

𝑛,𝛼 (𝜋1) − 𝜏new

𝑛,𝛼 (𝜋2) is

𝐼 =[
(
𝜃SG

𝑛,𝛼 (𝜋1 ) − 𝜃SG

𝑛,𝛼 (𝜋2 )
)
− 𝑍

1− 𝛽
2

√︃
(�̂�2

1,SG
+�̂�2

2,SG
)/𝑛,(

𝜃SG

𝑛,𝛼 (𝜋1 ) − 𝜃SG

𝑛,𝛼 (𝜋2 )
)
+ 𝑍

1− 𝛽
2

√︃
(�̂�2

1,SG
+�̂�2

2,SG
)/𝑛]

4.3 Inference for Base Estimator
The proof of Imai and Li [14] cannot be applied to prove the asymp-

totic normality of the base estimator 𝜃base
. Thus, we come up with

an alternative, more generally applicable proof via empirical pro-

cess theory [39] that allows us to prove the asymptotic normality

of the base and subgroup estimator (as well as the hybrid estimator

featured in Section 4.1). As described in Section 4.2, we can use

the asymptotic normality of the base estimator 𝜃base
to construct

asymptotically correct confidence intervals and p-values for it. In

short, we prove the following for the base estimator:

Theorem 4.2 (informal). Under very mild assumptions
√
𝑛

(
𝜃base

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)

𝑑→ N(0, 𝜎2

base) for some 𝜎2

base ≥ 0.

We can compute a consistent estimate �̂�2

base of 𝜎
2

base.

5 EXPERIMENTS
We empirically analyze the base and subgroup estimator using

the provably asymptotically correct variance estimation techniques

described in Section 4. We are interested in (i) checking whether the

asymptotically valid confidence intervals remain valid in realistic

settings, and (ii) comparing the statistical power of the estimators.

Setup. As commonly done in previous work [3, 20, 25, 30, 40, 41],

we assume that the behavior of each agent is modeled by a Markov

Decision Process. We focus on adherence settings, where there are

two states (‘good’= 1 or ‘bad’= 0) and two actions (‘intervene’= 1

or ‘do not intervene’= 0), and we obtain a reward of 1 for every

timestep a beneficiary is in the good state. Accordingly, the policy’s

goal is to use interventions to keep agents in the good state. By

default, our RCT arms consist of 𝑛 = 5000 agents and we can



Domain

Estimator

Base Subgroup

< CI in CI > CI < CI in CI > CI

Synthetic 0.027 0.952 0.021 0.036 0.935 0.029

TB 0.024 0.946 0.030 0.031 0.947 0.022

mMitra 0.018 0.956 0.026 0.039 0.938 0.023

(a) Fraction of times the estimand is in, below (< CI), or above (> CI) an estimator’s
95% confidence interval (over 1000 different RCTs).

Domain

Estimator

Base Subgroup

Synthetic 0.426 0.178

TB 0.778 0.293

mMitra 0.668 0.221

(b) Half-width of confidence intervals (averaged
over 1000 RCTs).

Table 1: Empirical comparison of the confidence intervals produced by different estimators. Both the base and subgroup estimator

produce approximately valid confidence intervals; however, the subgroup estimator’s confidence intervals are consistently smaller.

intervene on 20% of them (𝛼 = 0.2). Agents transition between states

according to a transition matrix 𝑇 , where an entry 𝑇𝑎
𝑠,𝑠′ specifies

the probability of transitioning from state 𝑠 ∈ {0, 1} to 𝑠′ ∈ {0, 1}
when taking action 𝑎 ∈ {0, 1}. We allocate the interventions in the

first time step using the respective transition probabilities to move

to the next state. Subsequently, we let agents transition between

states using𝑇 0
and collect rewards for another 9 time steps, i.e., the

reward generated by an agent is the number of timesteps in which

the agent is in the good state. We consider three domains, differing

in how transition matrices are built or learned (see Appendix C.1):

Synthetic Transition probabilities are chosen uniformly at random

subject to the constraint that the probability of going to a good

state when you act minus when you don’t act lies in a certain

range, i.e., 𝑇 1

𝑠,1
−𝑇 0

𝑠,1
∈ [0, 0.2] for each state 𝑠 ∈ {0, 1}.

Medication Adherence (TB) This domain uses real-world Tuber-

culosis medication adherence data from Killian et al. [21]. For

each agent, the data is used to fit their transition probabilities

under the passive action.We then simulate the treatment effect,

i.e., 𝑇 1

𝑠,1
−𝑇 0

𝑠,1
, in each state 𝑠 ∈ {0, 1} by sampling uniformly

at random from [0, 0.2].
Mobile Health (mMitra) We use real-world data from a field trial

conducted by Mate et al. [30] to evaluate the effectiveness

of service calls to improve engagements in a mobile health

information program. Agent’s transition probabilities both

under the active and passive action are learned from the data.

To choose which agents to intervene on, we calculate the classic

Whittle index [44] quantifying an agent’s action effect from their

transition matrix. We want to estimate the effectiveness of this

“Whittle Index” policy, which is the standard method to solve the

popular restless multi-armed bandits problem, focusing on com-

puting 95% confidence intervals. To evaluate our estimators, we

compute our estimand 𝜏new
via Monte Carlo simulation.

Validity (Table 1a). We check whether the confidence intervals

produced by our estimators are valid, i.e., whether the computed

95% confidence intervals (which differ between runs of an RCT

for one simulator) truly contain the estimand (which is constant

for each simulator) 95% of the times. Table 1a confirms that both

the base and subgroup estimators produce approximately valid

confidence intervals, with the error (i.e., |95% − in CI|) being less
than 1.5% in all three domains.

Power (Table 1b). Given that both the base and subgroup estima-

tors are valid, we can compare their power. We do this in Table 1b

by comparing the (half-)width of their confidence interval. We find

that our subgroup estimator always produces tighter confidence

intervals, with their width being usually around a third of the base

estimator’s confidence interval across all three domains.

A Representative Example (Figure 1). It is hard to appreciate the

difference between estimators in the abstract. To make the differ-

ence more concrete, we picked one representative RCT and show

in Figure 1 the confidence intervals computed by our estimators for

this RCT. As an example of how to read these figures, note that the

fact that the confidence interval of the base estimator crosses the

black vertical zero line in all three domains implies that we cannot

conclude that interventions had a statistically significant positive

effect using the base estimator. Figure 1 also includes in orange

the random allocation policy that assigns treatments uniformly

at random to 20% of the agents (its confidence intervals can be

correctly computed using a standard Welch’s 𝑧-test). We find that

the subgroup estimator allows us to draw otherwise impossible

statistical conclusions. In particular, for all three domains, based on

the results of the base estimator, we cannot conclude that there is a

statistically significant difference between the random and Whit-

tle policy (their confidence intervals overlap). In contrast, for the

subgroup estimator confidence intervals for the TB and mMitra

simulator are disjoint from the random ones. Using the approach

described at the end of Section 4.2, with high (i.e., 97.5%+) proba-
bility the expected effect of treatments allocated according to the

Whittle policy is 0.2 (resp. 0.4) higher than of treatments allocated

by the random policy in TB (resp. mMitra).

Changing Hyperparameters. In Appendix C.3 (Figures 5 to 7), we

analyze the influence of different hyperparameters. We vary the

treatment fraction, the number of agents, the number of observed

timesteps, the intervention effect (for TB and synthetic), and the con-

fidence level. In all the considered variations, computed confidence

intervals remain approximately valid: The error for both estimators

is always less than 3% and typically around 1%. Regarding the power

of our estimators, the subgroup estimator outperforms the base one

in all considered settings, yet the extent varies: The difference is

particularly large (up to a factor of 8) if treatment resources are

extremely scarce, there are only a few agents, agents are observed

over a long period, or the confidence level is high (see Figure 7b).

An illustrative observation of the discrepancy between the two

estimators is that the base estimator can require group sizes up to



Figure 1: A representative example of the size of confidence intervals.We compare different estimators for the effectiveness of the

Whittle policy (blue) and the random policy (orange). The 𝑥-axis shows the average effect of a treatment. Vertical lines show the estimand

and a zero treatment effect. For each estimator, we show their point estimate as a dot and their confidence interval as a line.

ten times larger than the subgroup estimator to achieve confidence

intervals of a similar size (see Figure 7d).

6 REAL-WORLD STUDY
We reevaluate the field study by Verma et al. [40] and start by

extending our methodology in different directions to deal with the

increased complexity of the real-world field trial.

6.1 Extended Methodology
We describe various extensions of our estimators to deal with the

field trial by Verma et al. [40]. Our extensions are no longer covered

by the variance estimation techniques and theoretical guarantees

from Section 4. Thus, in this section, we use the standard Welch’s

𝑧-test to compute confidence intervals. As argued at the end of

Section 4.2, Welch’s 𝑧-test produces approximately valid confidence

intervals in our basic setting, and our empirical results from this

section conducted using the same setup as in Section 5 indicate that

it continues to do so for our extensions. Details for the methods

and experiments presented in this section appear in Appendix D.

6.1.1 Covariates. To correct for imbalances between agents’ co-

variates in the RCT arms [16, 34], Mate et al. [30] and Verma et al.

[40] used linear regression. The idea is to learn a linear function

of covariates and a treatment indicator variable to capture the

agent’s reward. To correct the subgroup estimator for covariates,

we do the following: For some agent 𝑖 from the RCT we let 𝐽𝑖
be the action that the agent received and 𝑥𝑖,1, . . . , 𝑥𝑖,𝑚 ∈ R be

the agent’s numerical covariates. We can write the regression as

𝑅𝑖 (𝐽𝑖 ) = 𝑘 + 𝛽 𝐽𝑖 +
∑𝑚
𝑡=1

𝛾𝑡𝑥𝑖,𝑡 + 𝜖𝑖 , where the coefficient 𝛽 presents

the average treatment effect 𝜏new
. We fit the regression over the

𝛼-fraction of agents from the policy and control arm with the low-

est indices, i.e., 𝜋 (X𝑝𝑛, 𝛼) ∪ 𝜋 (X𝑐𝑛, 𝛼). Note that previous work has

used the agent’s arm membership as the indicator variable, i.e.,

they replaced 𝐽𝑖 on the right side with the agent’s group member-

ship and fitted the regression over all agents. In our experiments

(see Tables 2 and 3 in Appendix D), correcting for covariances can

have both positive and negative effects on the size of confidence

intervals depending on the correlation between covariates and the

reward. For the subgroup estimator confidence intervals remain

approximately valid, whereas the confidence intervals produced by

the base estimator exhibit a 10% error for one of our simulators.

6.1.2 Timestep Truncation. A common scenario in treatment al-

location is to observe agents’ behavior for 𝑇 timesteps after treat-

ments are allocated (and use their combined behavior as the total

reward). Choosing this 𝑇 is an impactful design decision of the

trial. If we use a small 𝑇 but intervention effects last for more than

𝑇 steps, we underestimate the additional reward generated by an

intervention leading to a conservative estimate. Conversely, if we

pick large values of 𝑇 , then the variance in agents’ behavior will

increase, leading to a larger variance in our estimators: Decreasing

𝑇 shrinks confidence intervals while simultaneously shifting them

down. We find in our experiments that the former effect can be

significantly stronger in some cases, leading to higher lower bounds

of confidence intervals (see Table 3 in Appendix D).

6.1.3 Sequential Allocation. In mMitra interventions are allocated

over multiple timesteps with the constraint that each agent only

receives a resource in one timestep. Our subgroup estimator admits

a natural extension to this setting: We take the difference between

the summed reward of the agents from the policy arm that received

treatment and the summed reward of the agents from the control

arm that would have been allocated treatment by the policy in one

of the steps. We find in our experiments that the validity and size of

confidence intervals remain unaffected by the number of timesteps

over which resources are distributed (see Figure 8 in Appendix D).

6.2 Results
We conclude by re-evaluating a real-world RCT conducted by Verma

et al. [40]. The goal of their study was to evaluate the effectiveness

of different sequential index-based allocation policies to allocate live

service calls to boost participation in ARMMAN’s mMitra program

(see Section 1). They follow a restless multi-armed bandits approach

and use the classic Whittle index [44]. Each RCT arm contains

3000 agents, and 1800 of them are allocated service calls over 6

weeks (300 calls per week). The reward generated by an agent is

the agent’s engagement in the program, i.e., the number of weeks

in which they listen to a substantial part of the week’s automated

voice message. Verma et al. [40] chose to end the evaluation of

their field trial after 10 weeks, i.e., the reward captures the agents’

behavior for 10 weeks (including the 6 weeks where treatments

are assigned); however, their data also covers the following weeks.

Two index-based allocation policies are studied: “ML Method 1” is

the baseline and “ML Method 2” is their improved approach for



Figure 2: Evaluation of RCT from Verma et al. [40].We show estimators’ point estimates as a dot and 95%-confidence intervals as a line

for different evaluation horizons with and without correcting for covariates. “Subgroup (First 𝑥 weeks)” refers to our subgroup estimator

applied to all agents that (would) have been allocated a treatment up until week 𝑥 .

index computation.
6
Verma et al. [40] used the base estimator with

covariate correction (Section 6.1.1).

Basic Results. We first focus on the 10 weeks case as used in the

original study (i.e., the two leftmost plots for the case with and

without covariate correction). The first two rows in each subfigure

of Figure 2 show the results for the base and subgroup estimator.

We find that using the subgroup instead of the base estimator and

correcting for covariates leads to smaller confidence intervals. How-

ever, none of the four methods is able to establish a positive average

effect for interventions as allocated by ML method 1 (the lower

bound of the confidence interval is always smaller than 0), while

for ML method 2 the lower bound for all four methods is around 0.

Fine-Grained Analysis. As 60% of agents received a call through-

out the trial, establishing a positive average intervention effect

(on this large subpopulation) can be quite challenging, since the

effect of cleverly assigned treatments decreases in the number of

allocated treatments. This raises the question of whether service

calls significantly positively affect at least some of the 1800 agents

receiving them, which turns out to be the case. To answer this

question, we make use of the flexibility of the subgroup estimator.

For some 𝑥 ∈ [1, 5], we estimate the average effect of a service

call on agents called in one of the first 𝑥 weeks by comparing their

reward to the reward of agents that would have been called in the

control arm in one of the first 𝑥 weeks.

Turning to the results (rows three to seven in each subfigure

of Figure 2), we find that for ML method 2 this view allows us

to conclude statistically significant (large) positive intervention

effects for agents called in one of the first 𝑥 for each 𝑥 ∈ [1, 5],
irrespective of whether we correct for covariates or not. Note that

for 𝑥 = 1 and no covariate correction, we recover the single-round

allocation setting and the standard subgroup estimator discussed in

Section 4. Thus, our conclusion that interventions—as prescribed

by ML method 2—have a statistically significant effect on agents

called in the first week is theoretically backed by our proofs from

Section 4. Moreover, when correcting for covariates, we can even

6
ML Method 1 uses past data to learn a model for each beneficiary. Subsequently, in a

separate step, the Whittle index is computed for each beneficiary, and based on this

resources are allocated. In contrast, ML Method 2 follows a so-called decision-focused

learning approach and combines these two steps into one.

establish that the service calls allocated in the first weeks by the

ML method 1 have a statistically significant effect. Looking into the

fine-grained structure of intervention effects was impossible under

the base estimator, as it treats the policy arm as one indecomposable

unit.

RCT Budget. The reason why Verma et al. [40] allocated treat-

ment to so many agents in their RCT is because the base estimator

has an enormous variance and suffers from extremely low statis-

tical power when the treatment fraction is low (see Figure 7b in

Appendix C.3). Thus, trying to establish a positive average inter-

vention effect on the 1800 agents is in some sense the best one can

do with the base estimator. However, the subgroup estimator shows

a much better performance when the budget is small. As a result, it

allows us to run RCTs with much lower costs for which average

intervention effects can even be established more easily.

25 Weeks of Evaluation Horizon. Moving from observing benefi-

ciaries for a total of 10 weeks to a total of 25 weeks has signifcant

consequences. As featured in Section 6.1.2, this increases the value

of the estimator while concurrently leading to (much) larger con-

fidence intervals. However, despite this increase in the size of the

confidence intervals, it turns out that this leads to an increase in

the lower bounds of confidence intervals here. As a result, for a

confidence level of 95%, using 25 instead of 10 weeks allows us to

establish up to 50% larger effect sizes, e.g., for the first three weeks

for ML method 2 without covariate correction. A relevant side con-

clusion of this analysis is that intervention effects in mMitra seem

to be long-lasting.
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A ADDITIONAL MATERIAL FOR SECTION 4.1
A.1 Corner Case: Base Estimator outperforms Subgroup Estimator
Intuitively, the base estimator performs advantageously in cases where agents that are at the boundary of getting treated generate a much

higher reward than other agents. The subgroup estimator might include some of these “noisy” agents in the control arm while not selecting

them in the policy arm, leading to noisy estimates. The base estimator is better equipped to handle such scenarios, as it takes all agents into

account so that such effects can cancel out.

To make this intuition more concrete, we state a result that we will later prove in Appendices F and H:



(a) Example from Appendix A.1. (b) Example from Appendix A.2

Figure 3: Distribution of the value of different estimators for 100000 RCTs. The estimand is 1 by construction. Horizontal lines
indicate one standard deviation below and above the mean.

Theorem A.1 (informal). Under mild assumptions, it holds that
√
𝑛

(
𝜃SG

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→ N(0, 𝜎2

SG) and
√
𝑛

(
𝜃base

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→

N(0, 𝜎2

base) where

𝜎2

SG =
1

𝛼2

(
𝛼 (1 − 𝛼) (𝜌2

1
+ 𝜌2

0
) − 2(1 − 𝛼) (𝜌1𝜇1 + 𝜌0𝜇0) + 𝜎2

1
+ 𝜎2

0

)
.

𝜎2

base =
1

𝛼2

(
𝛼 (1 − 𝛼) (𝜌1 − 𝜌0)2 + (2𝛼𝜇0 − 2(1 − 𝛼)𝜇1) (𝜌1 − 𝜌0) + 𝜎2

1
+ ˇ𝜎2

0
− 2𝜇1𝜇0 + Var(𝑅(0))

)
with 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) ≤ 𝑞𝛼 ], 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) > 𝑞𝛼 ], 𝜌𝑖 = E[𝑅(𝑖) |Υ(x) = 𝑞𝛼 ], 𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) ≤ 𝑞𝛼 ]] and ˇ𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) >

𝑞𝛼 ]] for 𝑖 ∈ {0, 1} where E is taken over (x, 𝑅) ∼ 𝑃 .

We present one specific example in the following, whose crucial ingredient is that we perturb the reward of an agent with covariates x
with 𝑓 (Υ(x) − 𝛼, 0, 0.05), where 𝑓 (𝑎, 𝜇, 𝜎) is the pdf of N(𝜇, 𝜎) evaluated at 𝑎. This means that the reward of agents whose index is close to

the 𝛼-quantile 𝑞𝛼 will get a large “boost” in their reward. To understand why the estimators react differently to this, we turn to the variance

expressions from Theorem A.1. The above-described “boost” will increase terms 𝜌1 and 𝜌0 drastically at the same rate, while only marginally

affecting all other terms. For the base estimator, the increase in 𝜌1 and 𝜌0 will approximately cancel out each other (as only the difference

𝜌1 − 𝜌0 between the terms appear). In contrast, in the variance of the subgroup estimator, the sum 𝜌1 + 𝜌0 of the two terms appears, implying

that no such effect takes place and the variance substantially increases.

Formally, in our example, we use 𝑛 = 500 and 𝛼 = 0.5. Each agent 𝑖 has a single covariate 𝑥𝑖 ∼ N(0, 1) and the index function is the

identity function, i.e., the index of agent 𝑖 is 𝑥𝑖 . To generate the reward of an agent, we sample some noise 𝑦𝑖 ∼ N(0, 1) for every agent.

Moreover, for each agent we add an index-dependent “boost” 𝑧𝑖 = 𝑓 (𝑥𝑖 − 𝛼, 0, 0.05), where 𝑓 (𝑎, 𝜇, 𝜎) is the pdf of N(𝜇, 𝜎) evaluated at 𝑎. We

set 𝑅𝑖 (0) = 𝑥𝑖 +𝑦𝑖 + 𝑧𝑖 and 𝑅𝑖 (1) = 𝑅𝑖 (0) + 1, i.e., we have a constant intervention effect of 1. Figure 3a shows the distribution of the value of

the estimators in 100000 simulated RCTs (note that we also include the hybrid estimator which we present in the next section). We see here

that the variance of the subgroup estimator is higher than that of the base one leading to around 20% larger confidence intervals.

A.2 Hybrid Estimator
Motivated by Appendix A.1, we propose a hybrid estimator that linearly combines the base and subgroup estimators, thereby blending their

strengths. Specifically, for any sequence �̂�𝑛 for which �̂�𝑛
𝑝
→ 𝑤 for some fixed𝑤 ∈ R, we define the hybrid estimator as

𝜃
hyb

𝑛,𝛼,�̂�
(𝜋) := (1 − �̂�𝑛) · 𝜃SG

𝑛,𝛼 (𝜋) + �̂�𝑛 · 𝜃base

𝑛,𝛼 (𝜋) .

In Section 4.3, we discuss formulas for computing the “optimal” value 𝑤∗
of 𝑤 and for computing the (asymptotically valid) confidence

intervals of the induced estimator. However, in our experiments from Section 5 we find that the optimal hybrid estimator performs always

extremely similarly to the subgroup one. However, there are some cases where the hybrid estimator with weight𝑤∗
performs better than

the other two. Specifically, we can slightly adjust the example described in Appendix A.1 by setting 𝑧𝑖 = 𝑓 (𝑥𝑖 − 𝛼, 0, 0.08) and observe in this



case that the variance of the hybrid estimator is smaller than of the other two. 95% confidence intervals produced by the hybrid estimator are

around 20% smaller than those of computed by the other two.

A.3 Threshold Estimator
Note that an alternative view on the subgroup estimator is that it compares the average behavior of agents receiving treatment to a proxy for

their average behavior in case we did not act on them. In the context of the subgroup estimator, this proxy is obtained by examining the

agents from the control arm that would have been selected by the policy. However, there are also other approaches: Let 𝜆 be the largest

index value of an agent on which we acted in the policy arm. One alternative approach is to estimate the expected intervention effect of the

threshold policy 𝜐Υ (·, 𝜆) as a proxy of 𝜏new

𝑛,𝛼 (𝜋Υ) (note that, up to ties in the index values, 𝜐Υ (·, 𝜆) would have selected the same agents in the

policy arm as 𝜋Υ). Recall that the expected intervention effect of 𝜐Υ (·, 𝜆) is much easier to deal with from a statistical point of view, as the

behavior of different agents is no longer linked to each other and they can be viewed as fully independent again. We arrive at the following

estimator:

𝜃TE

𝑛,𝛼 (𝜋) =
1

⌈𝛼𝑛⌉
∑︁

𝑖∈𝜋 (X𝑝
𝑛,𝛼 )
𝑅
𝑝

𝑖
(1) − 1

|𝜐Υ (X𝑐𝑛, 𝜆) |

∑︁
𝑖∈𝜐Υ (X𝑐

𝑛,𝜆)
𝑅𝑐𝑖 (0) .

However, we found in our experiments that the subgroup and threshold estimators behave very similarly in practice.

A.4 Relation to Mate et al. [31]
The main idea of Mate et al. [31] is to reduce the variance of the estimator 𝜃base

by reshuffling individuals across experimental arms after

the end of the trial. The idea is that the data we observe in our RCT also gives us access to the results of hypothetical RCTs with different

partitions into policy and control arms where the treated set of agents does not change. One of the main limitations of the work of Mate et al.

[31] is that their algorithm only produces a point-estimate (and no confidence intervals), probably also partly since they could not provide a

closed-form expression of the estimator. However, in the setting considered by us the latter problem can be fixed.

In the single-step setting, their algorithm reduces to the following: Let 𝜆 be the largest index of an agent in the policy arm that gets a

treatment, let 𝑁𝑐 be the agents in the control arm with an index above 𝜆, and let 𝑁𝑝 be the agents in the policy arm which we did not treat.

Note that if we had exchanged some agent from 𝑁𝑐 with some agent from 𝑁𝑝 before the start of the trial, both of them would continue to

not receive any action, so we have access to the outcome of this hypothetical trial. Let 𝑟 = 1

|𝑁 𝑐∪𝑁 𝑝 |
∑
𝑖∈𝑁 𝑐∪𝑁 𝑝 𝑅𝑖 (0) be the average reward

of agents from 𝑁𝑐 ∪ 𝑁𝑝 . The idea of Mate et al. [31] is now to replace the reward 𝑅𝑖 (0) of agents from 𝑁𝑐 ∪ 𝑁𝑝 with 𝑟 in the definition of

𝜃base
. As a result of this, non-treated agents from the control and policy arm will partly cancel out each other, resulting in:

1

𝑛

©«
∑︁

𝑖∈[𝑛]\𝑁 𝑝

𝑅𝑖 (1) + (|𝑁𝑝 | − |𝑁𝑐 |)𝑟 −
∑︁

𝑖∈[𝑛]\𝑁 𝑐

𝑅𝑖 (0)ª®¬ .
This estimator can be interpreted as a rescaled and perturbed version of the threshold estimator, where in case that |𝑁𝑝 | ≠ |𝑁𝑐 | the smaller

of the two groups ([𝑛] \ 𝑁𝑝 vs. [𝑛] \ 𝑁𝑐 ) gets “filled” with agents whose reward we estimate as 𝑟 to result in equal-sized groups. The same

analogy also holds in the sequential setting.

B ADDITIONAL MATERIAL FOR SECTION 4.2
It remains to describe the assumptions under which Theorem 4.1 holds. Recall that 𝐹Υ (𝜆) = P(x,𝑅)∼𝑃 [Υ(x) ≤ 𝜆] is the cumulative distribution

function of indices and let 𝐹−1 (𝑝) = inf{𝜆 | 𝐹Υ (𝜆) ≥ 𝑝} be the quantile function of 𝐹Υ . In addition to the assumptions made in our setup

from Section 2, the additional assumptions (which are Assumptions 4 and 5 in the work of Imai and Li [14]) are:

Assumption B.1. E(x,𝑅)∼𝑃 |𝑅𝑖 (𝑖) |3 < ∞ for 𝑖 ∈ {0, 1}.

Assumption B.2. Var(x,𝑅)∼𝑃𝑅𝑖 (𝑖) > 0 for 𝑖 ∈ {0, 1}.

Assumption B.3. E(x,𝑅)∼𝑃 [𝑅𝑖 (1) − 𝑅𝑖 (0) | Υ(x) = 𝐹−1 (𝑝)] is left-continuous (in 𝑝) with bounded variation on any interval (𝛾, 1 − 𝛾) with
𝛾 > 0 and continuous at 𝛼 .

C ADDITIONAL MATERIAL FOR SECTION 5
C.1 Details on Setup
To compute a high-quality approximation of our estimand, we take the average over 1000 RCTs. In each of these RCTs, we sample 𝑛 agents

(as characterized by their transition matrix) uniformly at random. Subsequently, using their transition probabilities, we analytically compute

for the ⌈𝛼𝑛⌉ agents with the lowest index the average difference in expected reward when they are intervened on or not.

We describe the simulation domains in more detail below:



Synthetic. Transition probabilities in the absence of an intervention are chosen uniformly at random:

𝑇 0

0,1,𝑇
0

1,1 ∼ 𝑈 [0, 1] and, 𝑇 0

𝑠,0 = 1 −𝑇 0

𝑠,1 for 𝑠 = {0, 1}

where 1 is the good state and 0 is the bad state. The probabilities for when we do intervene (active transitions 𝑇 1
) are chosen uniformly at

random, with the constraint that you are more likely to transition to the good state when you act:

𝑇 1

0,1,𝑇
1

1,1 ∼ 𝑈 [0, 1] s.t., (𝑇 1

𝑠,1 −𝑇
0

𝑠,1) ∈ [0, 0.2] for 𝑠 = {0, 1}

Medication Adherence (TB). We use data from Killian et al. [21] to learn the passive transition probabilities for different agents. We then

sample the effect of acting, i.e., 𝑇 1

𝑠,1
−𝑇 0

𝑠,1
, in each state 𝑠 ∈ {0, 1} uniformly at random from [0, 0.2] for every agent.

Mobile Health (mMitra). We use the data from the ‘random’ arm of the field trial in Mate et al. [30] to generate transition probabilities

from the observed data. We do this by first discretizing engagement into 2 states—an engaging beneficiary listens to the weekly automated

voice message (average length 60 seconds) for more than 30 seconds—and sequencing them to create an array (𝑠0, 𝑎0, 𝑠1, . . .). Then, to get the
transition matrix for beneficiary 𝑖 , we combine the observed transitions with 𝑃pop, a prior created by pooling all the beneficiaries’ trajectories

together such that for each beneficiary:

𝑇𝑎𝑠,𝑠′ = 𝑃 (𝑠
′ |𝑠, 𝑎) =

𝛼𝑃pop (𝑠′ |𝑠, 𝑎) + 𝑁 (𝑠, 𝑎, 𝑠′)∑
𝑥∈S 𝛼𝑃pop (𝑥 |𝑠, 𝑎) + 𝑁 (𝑠, 𝑎, 𝑥)

where 𝑁 (𝑠, 𝑎, 𝑠′) is the number of times the sub-sequence (𝑠, 𝑎, 𝑠′) occurs in the trajectory of that beneficiary, and 𝛼 = 5 is the strength of

the prior.

C.2 Figure 4
In Figure 4, we give examples for the confidence intervals produced by the subgroup estimator for 100 RCTs generated uniformly at random

for the three different simulators. In blue, we see the estimand and we mark the confidence interval in red if the estimand lies outside of it

(which should ideally happen 5% of the time). We see that the size of confidence intervals stays roughly the same across different RCTs,

while the position is slightly changing sometimes pushing the estimand outside of the interval.

C.3 Changing Hyperparameters
We analyze the influence of the hyperparameters of our simulation. Our default configuration is 𝑛 = 5000 agents, 𝛼 = 0.2, 10 observed

timesteps, a maximum intervention effect of 0.2 (for synthetic and TB), and a 95% confidence level. Then, in each experiment, we vary one

parameter while keeping the others constant. We give a summary of the insights from these experiments below:

Treatment Fraction (Figures 7a and 7b) We vary the treatment fraction 𝛼 . We observe the natural trend that the smaller the treatment

fraction, the larger the confidence intervals. However, the strength of this effect is very different for the two estimators with the

base estimator producing very large intervals as soon as 𝛼 drops below 0.1. Moreover, the confidence intervals output by the base

estimator exhibit errors up to 3% here (which is much higher than what we observe elsewhere). For the subgroup estimator, the error

is small ≤ 1% in almost all cases.

Number of Agents (Figures 7c and 7d) We vary the number of agents while keeping the treatment fraction constant. This does not seem

to have any clear effect on the validity of confidence intervals. For the size of confidence intervals, we observe the natural trend that

if we have more agents, the size of confidence intervals naturally shrinks. The strength of the effect is roughly similar for the two

estimators. However, notably, even with 20000 agents, the base estimator still produces intervals of considerable size.

Number of Observed Timestep (Figures 7e and 7f) We vary the number of timesteps we observe after the allocation of treatment, i.e.,

the number of timesteps over which agents collect reward if they are in the good state. This does not have a clear impact on the

validity of confidence intervals. Clearly, the longer we observe agents, the higher will be the variance in their behavior. Thus, it

is unsurprising that for both estimators confidence intervals get larger when more steps are observed. Notably, this increase is

particularly pronounced for the base estimator on the mMitra and TB domains.

Intervention Effect (Figure 5) We analyze what happens if we change the intervention effect. Recall that, for both the synthetic and TB

domains, we sample the transition probabilities such that the probability of the active action going to a good state exceeds that of the

passive action by a maximum of 0.2, i.e., 𝑇 1

𝑠,1
−𝑇 0

𝑠,1
∈ [0, 0.2]. In this set of experiments, we vary this "upper bound" of 0.1 to 0.5. We

find that the effect size does not seem to have a strong influence on the validity and size of confidence intervals.

Confidence Level (Figure 6) So far, we focused on 95% confidence intervals. Here, we examine the performance of our estimators for

90% and 99% confidence intervals. In terms of validity, we find that the error is roughly similar independent of the confidence level.

We observe that most often the confidence intervals are slightly under-covering, i.e., the estimand does not fall into the confidence

interval sufficiently often. In terms of sizes, we unsurprisingly find that we have larger intervals when increasing the confidence level.

What is more surprising is that for the subgroup estimator the difference between 90% and 95% is roughly similar to the difference

between 95% and 99%, while for the base estimator the latter difference is larger.



Figure 4: Confidence Intervals created by the Subgroup Estimator for 100 different simulations.

(a) Validity of confidence interval when varying the intervention effect. (b) Power of estimators when varying the intervention effect.

Figure 5: Empirical comparison of the confidence intervals produced by different estimators when varying the intervention
effect for the synthetic and TB domain, where we generate intervention effects randomly. In particular, for both domains, we
adjust the sampling so that the maximum intervention effect, i.e., the difference between the transition probability under
passive and active action, is at most the value depicted on the 𝑥-axis. On the left, we analyze validity by showing the fraction of
times the estimand falls in an estimator’s 95% confidence interval (the closer to 95% the better). On the right, we analyze the
power of estimators by depicting the half-width of computed confidence intervals (the smaller the better).



(a) Validity of confidence interval for different confidence levels. (b) Power of estimators for different confidence levels.

Figure 6: Empirical comparison of the confidence intervals produced by different estimators for different confidence levels.
On the left, we analyze validity by showing the fraction of times the estimand falls in an estimator’s confidence interval (the
closer the 𝑥 value is to the 𝑦 value, the better). On the right, we analyze the power of estimators by depicting the half-width of
computed confidence intervals (the smaller the better).



(a) Validity of confidence interval when varying the budget, i.e., the
number of allocated treatments.

(b) Power of estimators when varying the budget, i.e., the number of
allocated treatments.

(c) Validity of confidence interval when varying the number 𝑛 of agents. (d) Power of estimators when varying the number 𝑛 of agents.

(e) Validity of confidence interval when varying the observation hori-
zon, i.e., the number of timesteps over which we observe agents and
accumulate after the initial treatment allocation.

(f) Power of estimators when varying the observation horizon.

Figure 7: Empirical comparison of the confidence intervals produced by different estimators when varying hyperparameters.
On the left, we analyze validity by showing the fraction of times the estimand falls in an estimator’s 95% confidence interval (the
closer to 95% the better). On the right, we analyze the power of estimators by depicting the half-width of computed confidence
intervals (the smaller the better).



D ADDITIONAL MATERIAL FOR SECTION 6.1

Category Estimator

TB Synthetic mMitra

<CI in CI >CI <CI in CI >CI <CI in CI >CI

Basic

Base 0.024 0.944 0.032 0.023 0.957 0.020 0.028 0.945 0.027

Subgroup 0.018 0.949 0.033 0.026 0.945 0.029 0.022 0.956 0.022

Timestep

Truncation

6 Timesteps 0.000 0.620 0.380 0.025 0.951 0.024 0.013 0.932 0.055

2 Timesteps 0.000 0.000 1.000 0.007 0.886 0.107 0.000 0.013 0.987

Covariate Correction

(Linear Regression)

Base - - - 0.068 0.850 0.082 0.030 0.940 0.030

Subgroup - - - 0.033 0.939 0.028 0.029 0.945 0.026

Table 2: Validity of Confidence Intervals. We measure the fraction of times that the estimand is in an estimator’s 95% confidence

interval (over 1000 different simulations). We find that the base estimator, the subgroup estimator, and the subgroup estimator with covariate

correction are all approximately valid. The "timestep truncation" estimators only produce estimates that are lower than the confidence

intervals ≈ 0.025 fraction of the times, and are hence valid estimators of the lower bound of the intervention effect. The base estimator with

covariate correction performs poorly in both the mMitra and synthetic domains because the covariates are not strongly linearly correlated

with the treatment effect.

Category Estimator

Lower Bound of Estimate (Half-)Width of CI

TB Synthetic mMitra TB Synthetic mMitra

Basic

Base 0.122 -0.174 -0.225 0.689 0.386 0.581

Subgroup 0.540 0.015 0.135 0.284 0.199 0.215

Timestep

Truncation

6 Timesteps 0.477 0.067 0.165 0.190 0.147 0.155

2 Timesteps 0.237 0.125 0.136 0.063 0.068 0.066

Covariate Correction

(Linear Regression)

Base - -20.002 -0.221 - 19.468 0.576

Subgroup - -9.917 0.140 - 10.101 0.211

Table 3: Power of Estimators. Timestep truncation can drastically reduce the size of the confidence intervals at the cost of underestimating

intervention effects. However, we find that for two of our domains, there is typically a trade-off point where the variance reduces faster than

the bias, leading to larger estimates of the lower bound of the treatment effect.

D.1 Covariates
D.1.1 Methodology. While the formulation of the linear regression from Section 6.1.1 is straightforward it is slightly less clear on which set

of agents (say 𝑁 ′
) to fit the regression on to recover the subgroup estimator. To decide this, let us consider what happens in the absence of

covariates (i.e.,𝑚 = 0): In this case, 𝑘 will be the average reward of non-treated agents from 𝑁 ′
, and 𝛽 will be the average difference between

the rewards of treated and non-treated agents from 𝑁 ′
[45]. Thus, to recover our subgroup estimator in this degenerated case, we need to

fit over the 𝛼-fraction of agents from the policy and control arm with the lowest indices, i.e., 𝑁 ′ = 𝜋 (X𝑝𝑛, 𝛼) ∪ 𝜋 (X𝑐𝑛, 𝛼). Importantly, the

intuitive approach of using the full set of available agents (i.e., 𝑁 ′ = 𝑁 ) should not be pursued, as it leads to wrong results. In this case, 𝛽

would become the average reward difference between all agents we treated and all agents we did not treat in our RCT. This estimator does

not measure our estimand anymore, since even in case our intervention had no effect, treating the agents with the highest reward under the

passive action would result in a non-trivial 𝛽 value.

D.1.2 Experiments: Setup and Results. For the synthetic domain, we create |𝑋 | = 50 covariates for an agent by left multiplying their flattened

8-dimensional transition matrix (2 start states × 2 end states × 2 actions) by a 50 × 8 dimensional matrix whose entries are sampled from the

standard normal distribution N(0, 1). For the mMitra dataset, we use the actual set of covariates (e.g., age, income level, education level)

associated with each beneficiary from the field trial. The list of covariates, along with summary statistics for each, is discussed in detail in

the appendix of Wang et al. [43]). We find that correcting for covariates using linear regression yields slight benefits in power in the mMitra

domain for the subgroup estimator. However, for the base estimator it is quite bad in the synthetic domain where the confidence intervals

are no longer valid (confidence intervals that should contain the estimand 95% of times, only cover with 85% probability). This is because,

while the underlying relationship between covariates and probabilities is linear in this domain, there is a non-linear relationship between the

probabilities and the actual rewards.



D.2 Timestep Truncation
Recall that the rewards of agents are determined by observing their behavior for 10 steps. In this experiment, we still compute our estimand

using this procedure. However, for the computation of our estimators, we perturb the reward function by just observing agents’ behavior

for 2 (or 6) steps. As discussed in the main body this will lead to an underestimation of intervention effects while hopefully reducing the

size of confidence intervals due to reduced noise. The results of this experiment can be found in the middle rows of Tables 2 and 3. As

expected, in Table 2, we find that timestep truncation leads to conservative confidence intervals, which will oftentimes underestimate the

intervention effect, i.e., the estimated lies above the upper bound of the confidence interval. On the other hand, in the right part of Table 3 we

see that shortening the observation horizon decreases the size of confidence intervals substantially. For the synthetic domain and mMitra this

leads to an increase in the lower bounds of confidence intervals, implying that timestep truncation allows us to establish larger statistically

significant effect sizes. For the TB domain, this turns out to be not possible.

D.3 Sequential Allocation
D.3.1 Definition. To formally speak about the sequential setting, we need to extend our notation. Given a treatment fraction 𝛼 , a group

size 𝑛, and a time horizon 𝑇 , we assign the active action to (at most) ⌈𝛼𝑛⌉ agents in every timestep 𝑡 ∈ [𝑇 ]. We focus on the case where

each agent can receive the treatment at most once. Accordingly, an agent 𝑖 is now characterized by a set of time-step dependent covariates

x𝑡 ∈ X𝑇 and a reward function 𝑅𝑖 : {0, . . . ,𝑇 } → R that returns the total reward generated by the agent given the timestep in which we

assigned them the active action (0 corresponds to never acting). We denote as 𝑄 the probability function over X𝑇 × ({0, . . . ,𝑇 } → R) from
which agents are sampled i.i.d. At timestep 𝑡 ∈ [𝑇 ], given a treatment fraction 𝛼 and agent’s covariates (x[1,𝑡 ]

𝑖
)𝑖∈[𝑛] up until step 𝑡 , an index

based policy 𝜋Υ returns the 𝛼-fraction of agents with lowest index Υ(x[1,𝑡 ]
𝑖

) to which the policy has not assigned an active action in one of

the previous timesteps.

To evaluate such a sequential policy, we assume that we have access to an RCT where agents in the policy arm are assigned treatment

according to the policy that is tested. We again have a policy arm (p) containing 𝑛 agents (x̌[1,𝑇 ]
𝑖

, 𝑅𝑖 )𝑖∈[𝑛] sampled i.i.d. from 𝑄 on which

we run our policy 𝜋 . As the outcome, we observe (x̌[1,𝑇 ]
𝑖

, 𝑅𝑖 (𝐽𝑖 ))𝑖∈[𝑛] , where 𝐽𝑖 is the time step in which the policy 𝜋 assigns 𝑖 an active

action given the covariates (x̌[1,𝑇 ]
𝑖

)𝑖∈[𝑛] of all agents (and 0 if the policy never assigns an action to the agent). Moreover, we have access to a

control arm (c) of 𝑛 agents (x̂[1,𝑇 ]
𝑖

, 𝑅𝑖 )𝑖∈[𝑛] sampled i.i.d. from 𝑄 for which we observe (x̂[1,𝑇 ]
𝑖

, 𝑅𝑖 (0))𝑖∈[𝑛] .

D.3.2 Methodology. The definition of our estimand 𝜏new

𝑛,𝛼 changes in the sequential setting to:

𝜏𝑇𝑛,𝛼 (𝜋) :=
1

𝑇 ⌈𝛼𝑛⌉ E
∑︁
𝑡 ∈[𝑇 ]

𝑖∈𝜋
(
(x[1,𝑡 ]

𝑖
)𝑖∈ [𝑛] ,𝛼

)[𝑅𝑖 (𝑡) − 𝑅𝑖 (0)], (8)

where the expectation ranges over (x[1,𝑇 ]𝑖 , 𝑅𝑖 )𝑖∈[𝑛] ∼ 𝑄 . Moreover, the base estimator in the sequential setting becomes:

1

𝑇 ⌈𝛼𝑛⌉
©«

∑︁
𝑖∈[𝑛]

𝑅𝑖 (𝐽𝑖 ) −
∑︁
𝑖∈[𝑛]

𝑅𝑖 (0)ª®¬ .
The subgroup estimator is:

1

𝑇 ⌈𝛼𝑛⌉

©«
∑︁
𝑡 ∈[𝑇 ]

𝑖∈𝜋
(
(x̌[1,𝑡 ]

𝑖
)𝑖∈ [𝑛] ,𝛼

)𝑅𝑖 (𝐽𝑖 ) −
∑︁
𝑡 ∈[𝑇 ]

𝑖∈𝜋
(
(x̂[1,𝑡 ]

𝑖
)𝑖∈ [𝑛] ,𝛼

)𝑅𝑖 (0)
ª®®®®®®¬
.

The linear regression approach that corrects for covariates extends in a straightforward fashion. For the subgroup estimator, we get:

𝑅𝑖 (𝐽𝑖 ) = 𝑘 + 𝛽 𝐽𝑖 +
𝑚∑︁
𝑡=1

𝛾𝑡𝑥𝑖,𝑡 + 𝜖𝑖 ,

where 𝐽𝑖 indicates whether agent 𝑖 has received a treatment in one of the timesteps and fit it over {𝜋 ((x̌[1,𝑡 ]
𝑖

)𝑖∈[𝑛] , 𝛼) | 𝑡 ∈ [𝑇 ]} ∪
{𝜋 ((x̂[1,𝑡 ]

𝑖
)𝑖∈[𝑛] , 𝛼) | 𝑡 ∈ [𝑇 ]}. For the base estimator, we use

𝑅𝑖 (𝐽𝑖 ) = 𝑘 + 𝛽𝐼𝑖 +
𝑚∑︁
𝑡=1

𝛾𝑡𝑥𝑖,𝑡 + 𝜖𝑖 ,

where 𝐼𝑖 is one if agent 𝑖 belongs to the policy arm and zero if it belongs to the treatment arm and fit it over the full agent set.



(a) Validity of confidence interval for sequential allocation with vary-
ing planning horizons.

(b) Power of estimators for sequential allocationwith varying planning
horizons.

Figure 8: Empirical comparison of the confidence intervals produced by different estimators if resources are allocated over
multiple rounds. The 𝑥-axis value denotes the number𝑇 of rounds over which treatment is allocated. In each round we allocate
treatment to ⌈𝛼

𝑇
𝑛⌉ agents for 𝛼 = 0.1 and 𝑛 = 5000. On the left, we analyze validity by showing the fraction of times the estimand

falls in an estimator’s 95% confidence interval (the closer to 95% the better). On the right, we analyze the power of estimators by
depicting the half-width of computed confidence intervals (the smaller the better).

D.3.3 Experiments. Note that the setup of our experiment for the sequential setting is very similar to the one for the experiments in the

main body. The main difference is that while we still observe agents for ten time steps, here we allocate resources over the first 𝑥 of these

steps. Thus, the reward of an agent is still their summed behavior over ten timesteps, but they might receive treatment in say the second or

third of these ten steps.

Figure 8 shows results for the sequential setting where we vary the number of timesteps over which 500 treatment resources are distributed.

For 𝑥 = 1, all treatments are allocated in one timestep, whereas for 𝑥 = 5, we allocate 100 resources in each of the first five timesteps. We

find that the validity of confidence intervals remains largely unaffected when we allocate resources over multiple (instead of just one)

rounds. In terms of statistical power, the half-width of the confidence interval of the base estimator does not change when distributing

resources over multiple rounds. For the subgroup estimator, the size slowly decreases, which is in line with the estimand that also decreases

because interventions that are allocated in later rounds will have less of an effect. Consequently, the subgroup estimator outperforms the

base estimator even more in the sequential setting than in the single-round one.

E ADDITIONAL MATERIAL FOR SECTION 4.3: GENERAL RESULTS ON BIVARIATE DISTRIBUTIONS
In this and the next two sections, we will prove Theorem 4.2. In this section, we prove a result that works for general bivariate distribution

(independent of our notation of indices and rewards). Thus, we simplify our notation as follows: For each 𝑛 ∈ N, we have

(𝑊𝑖,𝑛, 𝑍𝑖,𝑛) 𝑖𝑖𝑑∼ 𝑃

for some bivariate probability distribution 𝑃 overW ×Z. Let 𝐹𝑊 (𝑥) = P(𝑊 ≤ 𝑥) denote𝑊 ’s marginal cdf and let 𝐹−1

𝑊
denote𝑊 ’s quantile

function. Let 𝑞𝛼 := 𝐹−1

𝑊
(𝛼) denote 𝐹𝑊 ’s 𝛼-quantile and define the event

𝐸𝑖,𝑛 := {𝑊𝑖,𝑛 ≤ 𝑞𝛼 }.
Similarly, define

𝐹𝑖,𝑛 := {𝑄W𝑛
(𝑊𝑖,𝑛) ≤ ⌈𝛼𝑛⌉},

where 𝑄W𝑛
(𝑊𝑖,𝑛) denotes the rank of𝑊𝑖,𝑛 amongW𝑛 := {𝑊1,𝑛, . . . ,𝑊𝑛,𝑛}. Further, let

𝑓 (𝑡) := E[𝑍1,𝑛 |𝑊1,𝑛 ≤ 𝑡]
𝑍 ’s expected value conditioned on𝑊 ≤ 𝑡 . Moreover, define

𝜓 (𝑡) := 𝑓 (𝐹−1

𝑊 (𝑡))
to be 𝑍 ’s expected value conditioned on𝑊 being in the 𝑡-quantile.

For any integrable (measurable) function 𝑔 : W × Z → R, let P𝑛𝑔 := 1

𝑛

∑𝑛
𝑖=1

𝑔(𝑊𝑖,𝑛, 𝑍𝑖,𝑛) and 𝑃𝑔 :=
∫
R
𝑔(𝑤, 𝑧)𝑑𝑃 (𝑤, 𝑧). We let

𝑓𝑡 (𝑤, 𝑧) := 𝑧𝐼 [𝑤 ≤ 𝑡] and 𝜑 : 𝑡 ↦→ 𝑃 𝑓𝑡 , i.e., 𝜑 (𝑡) = E[𝑍𝐼 [𝑊 ≤ 𝑡]].
Let

(𝑊(1),𝑛, 𝑍 (1),𝑛), . . . , (𝑊(𝑛),𝑛, 𝑍 (𝑛),𝑛)
denote the sequence of pairs (𝑊𝑖,𝑛, 𝑍𝑖,𝑛) sorted in increasing order of the𝑊𝑖,𝑛 (i.e., so that𝑊(𝑖 ),𝑛 ≤𝑊( 𝑗 ),𝑛 for 𝑖 ≤ 𝑗 ).

Our results from this section rely on the following two assumptions:



Assumption E.1. 𝐹𝑊 has a positive derivative at 𝑞𝛼 .

Assumption E.2. 𝑍 has a second moment.

We show the following:

Theorem E.3. Let �̃� = E[𝑍𝑖,𝑛𝐼𝐸𝑖,𝑛 ] and �̃�2 = Var(𝑍𝑖 𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ]). Under Assumptions E.1 and E.2,

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖,𝑛𝐼𝐹𝑖,𝑛 − �̃�
)
𝑑→ N(0, �̃�2 − 2E[𝑍 |𝑊 = 𝑞𝛼 ] �̃� (1 − 𝛼) + E[𝑍 |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)) . (9)

This section (and its notation) follows very closely the notes in Example 1.5 of [33]. Recall that for any integrable (measurable) function

𝑓 : W × Z → R, let P𝑛 𝑓 := 1

𝑛

∑𝑛
𝑖=1

𝑓 (𝑊𝑖,𝑛, 𝑍𝑖,𝑛) and 𝑃 𝑓 :=
∫
R
𝑓 (𝑤, 𝑧)𝑑𝑃 (𝑤, 𝑧). We let 𝑓𝑡 (𝑤, 𝑧) := 𝑧𝐼 [𝑤 ≤ 𝑡] and 𝜑 : 𝑡 ↦→ 𝑃 𝑓𝑡 , i.e.,

𝜑 (𝑡) = E[𝑍𝐼 [𝑊 ≤ 𝑡]]. We observe that

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖,𝑛𝐼𝐹𝑖,𝑛 − �̃�
)
=
√
𝑛(P𝑛 𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑃 𝑓𝑞𝛼 )

=
√
𝑛(P𝑛 − 𝑃) 𝑓𝑞𝛼 +

√
𝑛(P𝑛 𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − P𝑛 𝑓𝑞𝛼 )

= G𝑛 [𝑓𝑞𝛼 ] + G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ] +
√
𝑛(𝑃 𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑃 𝑓𝑞𝛼 )

= G𝑛 [𝑓𝑞𝛼 ] + G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ] +
√
𝑛(𝜑 (𝑊( ⌈𝛼𝑛⌉ ),𝑛) − 𝜑 (𝑞𝛼 )) (10)

where G𝑛 denotes the empirical process (indexed by functions 𝑓 ∈ F := {𝑓𝑡 : 𝑡 ∈ R}) equal to
√
𝑛(P𝑛 − 𝑃).

The delta method allows us to easily handle the third term:

Lemma E.4. We have √
𝑛(𝜑 (𝑊( ⌈𝛼𝑛⌉ ),𝑛) − 𝜑 (𝑞𝛼 )) = 𝜑 ′ (𝑞𝛼 )

√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1) .

Proof. The delta method simply requires that𝜑 is differentiable at 𝑞𝛼 , which we verify at the end of this subsection (using Assumption E.1),

just before the beginning of Appendix E.1. □

Using empirical process theory in Appendix E.1 we show that the second term goes to 0 in probability:

Lemma E.5.
G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ]

𝑝
→ 0

By (10) as well as Lemmas E.4 and E.5, we have that

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖,𝑛𝐼𝐹𝑖,𝑛 − �̃�
)
= G𝑛 [𝑓𝑞𝛼 ] + 𝜑 ′ (𝑞𝛼 )

√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1) (11)

=
√
𝑛( 1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖,𝑛𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − �̃�) + 𝜑 ′ (𝑞𝛼 )
√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1)

Furthermore, under Assumption E.1 standard results (c.f. [38] Corollary 21.5) give the following asymptotic expansion for the second

term of Equation (11):

√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) = − 1

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
+ 𝑜𝑝 (1).

Using multidimensional CLT we have that

√
𝑛

(
1

𝑛

∑𝑛
𝑖=1

𝑍𝑖 𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − �̃�
− 1

𝑛

∑𝑛
𝑖=1

𝜑 ′ (𝑞𝛼 ) 𝐼 [𝑊𝑖≤𝑞𝛼 ]−𝛼
𝐹 ′
𝑊

(𝑞𝛼 )

)
𝑑→ N

((
0

0

)
,

(
�̃�2 −𝜑 ′ (𝑞𝛼 )�̃� (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 )

−𝜑 ′ (𝑞𝛼 )�̃� (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 ) 𝜑 ′ (𝑞𝛼 )2𝛼 (1 − 𝛼)/𝐹 ′
𝑊

(𝑞𝛼 )2

))
So, using continuous mapping theorem, we can conclude that

√
𝑛( 1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − �̃�) −
1

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
) 𝑑→ N(0, �̃�2 − 2𝜑 ′ (𝑞𝛼 )�̃� (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 ) + 𝜑 ′ (𝑞𝛼 )2𝛼 (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 )2

and hence

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑍𝑖,𝑛𝐼𝐹𝑖,𝑛 − �̃�
)
𝑑→ N(0, �̃�2 − 2𝜑 ′ (𝑞𝛼 )�̃� (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 ) + 𝜑 ′ (𝑞𝛼 )2𝛼 (1 − 𝛼)/𝐹 ′𝑊 (𝑞𝛼 )2) (12)



Finally, let us obtain a reasonable form for 𝜑 ′ (𝑞𝛼 ). Recall that 𝜑 (𝑡) := E[𝑍𝐼 [𝑊 ≤ 𝑡]]. Writing the expectation as a Riemann-Stieltjies

integral, we find that

E[𝑍𝐼 [𝑊 ≤ 𝑡]] = E[𝐼 [𝑊 ≤ 𝑡]E[𝑍 |𝑊 ]] =
∫ 𝑡

−∞
E[𝑍 |𝑊 = 𝑤]𝑑𝐹𝑊 (𝑤) .

The Fundamental Theorem of Calculus for Riemann-Stieltjies integrals (cf. Theorem 7.32 (iii) of [1]) combined with Assumption E.1 then

implies that the derivative of the above, at 𝑞𝛼 , is E[𝑍 |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 ). Plugging this into Equation (12), Theorem E.3 follows. It remains to

prove Lemma E.5.

E.1 Proof of Lemma E.5
To prove Lemma E.5, we first recall some basic terminology from [39] for ease of readability.

Definition E.6 (VC dimension). Let C be a collection of subsets of X. The VC dimension of C, is defined as

VC(C) := max{𝑛 ∈ N : ∃𝑆 ⊆ X with |𝑆 | = 𝑛 such that 𝑆 is shattered by C}
where we say that a set 𝑆 is shattered by C if the power set of 𝑆 is contained in {𝐶 ∩ 𝑆 : 𝐶 ∈ C}.

Definition E.7 (Subgraph of a function; cf Page 141 of [39]). Let 𝑓 : X → R. The subgraph of 𝑓 is defined as the set

{(𝑥, 𝑠) ∈ X × R : 𝑠 < 𝑓 (𝑥)}.

Definition E.8 (VC subgraph; cf Page 141 of [39]). Let F be a class of functions from X → R and let C be the associated class of subgraphs

of elements of F . The class F is said to be a VC-subgraph class if VC(C) < ∞.

We now show a standard fact:

Lemma E.9. Let 𝑔𝑡 : W ×Z → R given by 𝑔𝑡 (𝑤, 𝑧) = 𝐼 [𝑤 ≤ 𝑡]. Then G := {𝑔𝑡 : 𝑡 ∈ R} is a VC-subgraph class.

Proof. Let C be the class of subgraphs of elements of G. We claim that no three points

𝑆 = {(𝑤1, 𝑧1, 𝑠1), (𝑤2, 𝑧2, 𝑠2), (𝑤3, 𝑧3, 𝑠3)}
can be shattered by C (and hence VC(C) < 3). To see why, suppose, without loss of generality, that 𝑤1 ≤ 𝑤2 ≤ 𝑤3. Also, observe that

we need only consider 𝑠𝑖 ∈ [0, 1) since otherwise the point (𝑤𝑖 , 𝑧𝑖 , 𝑠𝑖 ) could only be labeled in one way. But in this case, notice that there

exists no 𝐶 ∈ C for which 𝐶 ∩ 𝑆 = {(𝑤1, 𝑧1, 𝑠1), (𝑤3, 𝑧3, 𝑠3)} since otherwise there would exist some 𝑡 for which𝑤1 ≤ 𝑡,𝑤3 ≤ 𝑡 but𝑤2 > 𝑡 ,

contradicting the fact that𝑤1 ≤ 𝑤2 ≤ 𝑤3.

□

Lemma E.9 combined with another standard fact shows that F = {𝑓𝑡 : 𝑡 ∈ R} is a VC-subgraph class:

Lemma E.10. The class of functions F = {𝑓𝑡 : 𝑡 ∈ R} is a VC-subgraph class.

Proof. Lemma 2.6.18 of [39] part (vi) tells us that {𝑓 𝑔 : 𝑔 ∈ G} is a VC-subgraph class so long as the class G is a VC-subgraph class.

Observing that F = {𝑓 𝑔 : 𝑔 ∈ G} with G defined as above and 𝑓 (𝑤, 𝑧) = 𝑧, and using the fact that G is a VC-subgraph class from Lemma E.9

allows us to conclude the result. □

We now recall a bit more terminology.

Definition E.11 (Envelope function). A measurable function 𝐹 : W ×Z → R is said to be an envelope function for a function class F if

|𝑓 | ≤ 𝐹 for all 𝑓 ∈ F .

Definition E.12 (𝑃-measurability; cf Definition 2.3.3 of [39]). A set F of functions, 𝑓 : X → R on (X,A, 𝑃) is called 𝑃-measurable if the

map

(𝑋1, . . . , 𝑋𝑛) ↦→ ∥
𝑛∑︁
𝑖=1

𝑒𝑖 𝑓 (𝑋𝑖 )∥F,

where ∥ 𝑓 (·)∥F means sup𝑓 ∈F |𝑓 (·) |, is measurable on the completion of (X𝑛,A𝑛, 𝑃𝑛) for every 𝑛 and every vector (𝑒1, . . . , 𝑒𝑛) ∈ R𝑛 .

Now, we define covering number and Donsker class:

Definition E.13 (Uniform entropy bound; c.f. [39] Page 127). A class of functions F is said to satisfy the uniform entropy bound if∫ ∞

0

sup

𝑄

√︃
log𝑁 (𝜖 ∥𝐹 ∥𝑄,2, F , 𝐿2 (𝑄))𝑑𝜖 < ∞.

Definition E.14 (𝑃-Donsker; c.f. [39] page 81). A class of functions F for which the empirical process

√
𝑛(P𝑛 − 𝑃), indexed by F , converges

weakly in ℓ∞ (F ) to a tight Borel measurable element G in ℓ∞ (F ) is said to be 𝑃-Donsker.

Now, a theorem from [39]:



Theorem E.15 (Theorem 2.5.2 of [39]). Let F be a class of functions satisfying the uniform entropy bound. Furthermore, suppose that the
classes

{𝑓 − 𝑔 : 𝑓 , 𝑔 ∈ F , ∥ 𝑓 − 𝑔∥𝑃,2 < 𝛿}
and

{(𝑓 − 𝑔) · (𝑓 ′ − 𝑔′) : 𝑓 , 𝑔, 𝑓 ′, 𝑔′ ∈ F }
are 𝑃-measurable for every 𝛿 > 0. If the envelope function 𝐹 for F is square integrable, then F is 𝑃-Donsker.

This theorem (and some of the previous lemmata) easily allows us to conclude that:

Lemma E.16. F = {𝑓𝑡 : 𝑡 ∈ R} is 𝑃-Donsker.

Proof. First, we show the even stronger condition that {𝑓𝑡 − 𝑓𝑠 : 𝑓𝑡 , 𝑓𝑠 ∈ F } is 𝑃-measurable. Consider the map

((𝑊1, 𝑍1), . . . , (𝑊𝑛, 𝑍𝑛)) ↦→ sup

𝑡,𝑠

��� 𝑛∑︁
𝑖=1

𝑒𝑖 𝑓𝑡 (𝑊𝑖 , 𝑍𝑖 ) − 𝑒𝑖 𝑓𝑠 (𝑊𝑖 , 𝑍𝑖 )
���

= sup

𝑡,𝑠
|

∑︁
𝑖∈[𝑛]:𝑊𝑖 ∈ (𝑠,𝑡 ]

𝑒𝑖𝑍𝑖 |

Clearly the supremum can be replaced by a supremum over 𝑡 and 𝑠 in the rationals. Since a countable supremum of measurable functions

(which the inside of the supremum clearly is) is measurable, the result is measurable. The same argument shows

((𝑊1, 𝑍1), . . . , (𝑊𝑛, 𝑍𝑛)) ↦→ sup

𝑠,𝑡,𝑠′,𝑡 ′

��� 𝑛∑︁
𝑖=1

𝑒𝑖 (𝑓𝑡 (𝑊𝑖 , 𝑍𝑖 ) − 𝑓𝑠 (𝑊𝑖 , 𝑍𝑖 )) (𝑓𝑡 ′ (𝑊𝑖 , 𝑍𝑖 ) − 𝑓𝑠′ (𝑊𝑖 , 𝑍𝑖 ))
���

is measurable.

Now, observe that |𝑓 (𝑤𝑖 , 𝑧𝑖 ) | ≤ |𝑤𝑖 | and𝑊 ’s having second moment immediately implies that the envelope function 𝐹 (𝑤, 𝑧) = 𝑤 is

square-integrable.

Finally, notice that log𝑁 (𝜖 ∥𝐹 ∥𝑄,2, F , 𝐿2 (𝑄)) = 0 for 𝜖 ≥ 1, clearly. And hence we must show that∫
1

0

sup

𝑄

√︃
log𝑁 (𝜖 ∥𝐹 ∥𝑄,2, F , 𝐿2 (𝑄))𝑑𝜖 < ∞.

Theorem 2.6.7 of [39], combined with our observation that F is a VC class, says that

√︁
log𝑁 (𝜖 ∥𝐹 ∥𝑄,2, F , 𝐿2 (𝑄)) ≤ 𝑂 (

√︁
log(1/𝜖)) and it

is indeed true that

∫
1

0

√︁
log(1/𝜖) < ∞, as desired. □

We now recall the definition of asymptotic equicontinuity:

Definition E.17 ([39] page 89). Define the seminorm 𝜌 𝑓 (𝑓 ) = (𝑃 (𝑓 − 𝑃 𝑓 )2)1/2
. Then we say that the empirical process G𝑛 indexed by the

function class F is asymptotically equicontinuous if

lim

𝛿↓0

lim sup

𝑛→∞
𝑃

(
sup

𝜌𝑃 (𝑓 −𝑔)<𝛿
|G𝑛 (𝑓 − 𝑔) | > 𝜖

)
= 0.

Theorem 1.5.7 of [39] combined with the fact that F is 𝑃-Donsker (Lemma E.16) then immediately implies that G𝑛 :=
√
𝑛(P𝑛 − 𝑃) is

uniformly equicontinuous. We are finally able to prove Lemma E.5:

Lemma E.18.
G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ]

𝑝
→ 0

Proof. First, observe that 𝜌 𝑓 (𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ) = 𝑜𝑝 (1). To see why, we have that

(𝜌 𝑓 (𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ))2 ≤
∫

(𝑧 (𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ])2𝑑𝑃 (𝑤, 𝑧)

=

∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝑑𝑃 (𝑤, 𝑧)

which easily converges to zero in probability: Fix any 𝛿 > 0∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝑑𝑃 (𝑤, 𝑧)

=

∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | < 𝛿]𝑑𝑃 (𝑤, 𝑧)

+
∫

𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | ≥ 𝛿]𝑑𝑃 (𝑤, 𝑧)



≤ 2

∫
𝑧2𝐼 [|𝑤 − 𝑞𝛼 | < 𝛿]𝑑𝑃 (𝑤, 𝑧) +

∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | ≥ 𝛿]𝑑𝑃 (𝑤, 𝑧) (13)

Notice that

𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | ≥ 𝛿]
𝑎.𝑠.→ 0

for both𝑤 = 𝑞𝛼 − 𝛿 and𝑤 = 𝑞𝛼 + 𝛿 since𝑊( ⌈𝛼𝑛⌉ ),𝑛
𝑎.𝑠.→ 𝑞𝛼 . Letting

𝐴 = { lim

𝑛→∞
𝑧2 |𝐼 [𝑞𝛼 − 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑞𝛼 − 𝛿 ≤ 𝑞𝛼 ] |𝐼 [|𝑞𝛼 − 𝛿 − 𝑞𝛼 | ≥ 𝛿] = 0}

∩ { lim

𝑛→∞
𝑧2 |𝐼 [𝑞𝛼 + 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑞𝛼 + 𝛿 ≤ 𝑞𝛼 ] |𝐼 [|𝑞𝛼 + 𝛿 − 𝑞𝛼 | ≥ 𝛿] = 0}

denote the event that both convergences occur, a union bound tells us that 𝑃 (𝐴) = 1. Now, notice that for any𝑤 ′ ≤ 𝑞𝛼 − 𝛿 we have that

𝑧2 |𝐼 [𝑤 ′ ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ′ ≤ 𝑞𝛼 ] |𝐼 [|𝑤 ′ − 𝑞𝛼 | ≥ 𝛿]
= 𝑧2 (1 − 𝐼 [𝑤 ′ ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛])
≤ 𝑧2 (1 − 𝐼 [𝑞𝛼 − 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛])
= 𝑧2 |𝐼 [𝑞𝛼 − 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑞𝛼 − 𝛿 ≤ 𝑞𝛼 ] |𝐼 [|𝑞𝛼 − 𝛿 − 𝑞𝛼 | ≥ 𝛿]

Similarly, for any𝑤 ′ ≥ 𝑞𝛼 + 𝛿 , we have that

𝑧2 |𝐼 [𝑤 ′ ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ′ ≤ 𝑞𝛼 ] |𝐼 [|𝑤 ′ − 𝑞𝛼 | ≥ 𝛿]
= 𝑧2𝐼 [𝑤 ′ ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛]
≤ 𝑧2𝐼 [𝑞𝛼 + 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛]
≤ 𝑧2 |𝐼 [𝑞𝛼 + 𝛿 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑞𝛼 + 𝛿 ≤ 𝑞𝛼 ] |𝐼 [|𝑞𝛼 + 𝛿 − 𝑞𝛼 | ≥ 𝛿]

Hence, on the event 𝐴, we have that 𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | ≥ 𝛿] → 0 for all (𝑤, 𝑧) so that

𝑃

(
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | ≥ 𝛿] → 0,∀(𝑤, 𝑧)

)
= 1.

Hence, dominated convergence theorem implies that∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝐼 [|𝑤 − 𝑞𝛼 | > 𝛿]𝑑𝑃 (𝑤, 𝑧)

𝑎.𝑠.→ 0,

Using this, from Equation (13) we get that:

lim sup

𝑛

∫
𝑧2 |𝐼 [𝑤 ≤𝑊( ⌈𝛼𝑛⌉ ),𝑛] − 𝐼 [𝑤 ≤ 𝑞𝛼 ] |𝑑𝑃 (𝑤, 𝑧)

𝑎.𝑠.
≤ 2

∫
𝑧2𝐼 [|𝑤 − 𝑞𝛼 | ≤ 𝛿]𝑑𝑃 (𝑤, 𝑧).

But notice that lim𝛿↓0
[|𝑤 − 𝑞𝛼 | ≤ 𝛿] = 0 for almost every𝑤 (in view of Assumption E.1) and hence dominated convergence in turn tells

us that

lim

𝛿↓0

2

∫
𝑧2𝐼 [|𝑤 − 𝑞𝛼 | ≤ 𝛿]𝑑𝑃 (𝑤, 𝑧) = 0,

and hence indeed

𝜌 𝑓 (𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ) = 𝑜𝑝 (1),

as desired.

Then we have that, for any 𝜖, 𝛿 > 0,

𝑃 ( |G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ] | > 𝜖)
= 𝑃 ( |G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ] | > 𝜖, 𝜌 𝑓 (𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ) > 𝛿) + 𝑃 ( |G𝑛 [𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ] | > 𝜖, 𝜌𝑝 (𝑓𝑊( ⌈𝛼𝑛⌉),𝑛 − 𝑓𝑞𝛼 ) ≤ 𝛿)

The first term goes to zero by the above and the second term is at most

𝑃

(
sup

𝜌𝑃 (𝑓 −𝑔)<𝛿
|G𝑛 (𝑓 − 𝑔) | > 𝜖

)
.

Taking 𝑛 → ∞, then 𝛿 ↓ 0 and using the definition of uniform equicontinuity then gives the desired result. □



F ADDITIONAL MATERIAL FOR SECTION 4.3: MAIN RESULT
We now prove the asymptotic normality of the base estimator (and afterward present an alternative proof to the one in [14] for the asymptotic

normality of the subgroup estimator). For ease of presentation, we slightly adjust our notation from the main body. First, we characterize

agents directly by their indices𝑊 (instead of their covariates from which their indices are computed). Accordingly, we let 𝑃 ′ be an adjusted

variant of the probability distribution 𝑃 from the main body defined over the space of indices R and reward functions 𝐴 → R. We write

(𝑊𝑖,𝑛, 𝑅𝑖,𝑛) ∼ 𝑃 ′ to denote a set of 𝑛 agents being sampled i.i.d. from the probability distribution 𝑃 ′.
In the policy group, we observe (𝑊𝑖,𝑛, 𝑅𝑖,𝑛 (𝐽𝑖,𝑛)) where 𝐽𝑖,𝑛 is the binary treatment indicator variable of agent 𝑖 . In the control group,

we observe (𝑊 0

𝑖,𝑛
, 𝑅0

𝑖,𝑛
(0)). For simplicity, we will sometimes write for agents in the policy group 𝑅𝑖,𝑛 to denote the outcome of the reward

function that we observe and 𝑅0

𝑖,𝑛
for the agents in the control group.

Let

𝐹𝑖,𝑛 := {𝑄W𝑛
(𝑊𝑖,𝑛) ≤ ⌈𝛼𝑛⌉},

where 𝑄W𝑛
(𝑊𝑖,𝑛) denotes the rank of𝑊𝑖,𝑛 among W𝑛 := {𝑊1,𝑛, . . . ,𝑊𝑛,𝑛} and let 𝐼𝐹𝑖,𝑛 denote the corresponding indicator variable, i.e.,

𝐼𝐹𝑖,𝑛 is 1 if𝑊𝑖,𝑛 is among the ⌈𝛼𝑛⌉ lowest indices of the 𝑛 agents in the policy group, i.e., it receives a treatment. Analogously, let

𝐹 0

𝑖,𝑛 := {𝑄W0

𝑛
(𝑊 0

𝑖,𝑛) ≤ ⌈𝛼𝑛⌉},

where 𝑄W0

𝑛
(𝑊 0

𝑖,𝑛
) denotes the rank of𝑊 0

𝑖,𝑛
among W0

𝑛 := {𝑊 0

1,𝑛
, . . . ,𝑊 0

𝑛,𝑛}. Similarly, define

𝐸𝑖,𝑛 := {𝑊𝑖,𝑛 ≤ 𝑞𝛼 }

and

𝐸0

𝑖,𝑛 := {𝑊 0

𝑖,𝑛 ≤ 𝑞𝛼 }.
We define 𝜏𝑛 := E[𝑅1,𝑛 (1)𝐼𝐹1,𝑛

] − E[𝑅1,𝑛 (0)𝐼𝐹1,𝑛
].

Before proceeding, we simply restate the convergence result of [14] which shows that the difference between estimands converges at a

faster-than-

√
𝑛 rate

Theorem F.1 (Lemma S2 in Appendix S2 of [14]). Under Assumption B.3, we have
√
𝑛(𝜏𝑛 − E[𝑅1,𝑛 (1)𝐼𝐸𝑖,𝑛 − 𝑅0

1,𝑛 (0)𝐼𝐸0

𝑖,𝑛
]) → 0. (14)

F.1 Base estimator
We now prove asymptotic normality for the base estimator. The original, non-rescaled version of the base estimator can be written as:

1

𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 − 𝑅0

𝑖,𝑛) .

In particular, we show that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 − 𝑅0

𝑖,𝑛 − 𝜏𝑛)
𝑑→ N(0, 𝜎2

dm
),

for some 𝜎2

dm
to be specified later.

Using Theorem F.1, we write

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 − 𝑅0

𝑖,𝑛 − 𝜏𝑛) (15)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − E[𝑅𝑖,𝑛 (1)𝐼𝐸𝑖,𝑛 ]) +
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0) (1 − 𝐼𝐹𝑖,𝑛 ) − E[𝑅𝑖,𝑛 (0) (1 − 𝐼𝐸𝑖,𝑛 )]) (16)

− 1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 − E[𝑅0

𝑖,𝑛]) + 𝑜 (1) (17)

Under the same assumptions as Theorem E.3, essentially the exact same proof of Theorem E.3 allows us to show that, defining 𝜇𝑡 :=

E[𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]], 𝜇0 := E[𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]],

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − E[𝑅𝑖,𝑛 (1)𝐼𝐸𝑖,𝑛 ])

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) + E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )
√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1)



=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
+ 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

Similarly, by using a proof strategy nearly identical to Theorem E.3, we obtain that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0) (1 − 𝐼𝐹𝑖,𝑛 ) − E[𝑅𝑖,𝑛 (0) (1 − 𝐼𝐸𝑖,𝑛 )])

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) − E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )
√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
+ 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

Hence, display (17) may be rewritten as

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼𝐹𝑖,𝑛 − E[𝑅𝑖,𝑛𝐼𝐸𝑖,𝑛 ]) +
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0) (1 − 𝐼𝐹𝑖,𝑛 ) − E[𝑅𝑖,𝑛 (0) (1 − 𝐼𝐸𝑖,𝑛 )])

− 1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 − E[𝑅0

𝑖,𝑛]) + 𝑜 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) +
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0)

− E[𝑅(1) |𝑊 = 𝑞𝛼 ] − E[𝑅(0) |𝑊 = 𝑞𝛼 ]√
𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼) −
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 − E[𝑅0

𝑖,𝑛]) + 𝑜𝑝 (1)

Note that the last term is independent of the first three. By the CLT, the last term converges in distribution to N(0,Var(𝑅(0))). To obtain

the limiting distribution for the first three terms, we employ the multidimensional CLT. Defining 𝜎2

𝑡 := Var(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]), ˇ𝜎2

0
:=

Var(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]), we obtain that:

1

√
𝑛

𝑛∑︁
𝑖=1

©«
𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡
𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0

−E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ] (𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)
ª®¬

𝑑→ N (0, Σ)
where Σ is

©«
𝜎2

𝑡 −𝜇𝑡 𝜇0 −E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑡 (1 − 𝛼)
−𝜇𝑡 𝜇0

ˇ𝜎2

0
𝛼E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

−E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑡 (1 − 𝛼) 𝛼E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0 E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)

ª®®¬
Hence, the continuous mapping theorem, combined with our earlier calculations, easily shows that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 − 𝑅0

𝑖,𝑛 − 𝜏𝑛)
𝑑→ N

(
0, 𝜎2

dm

)
where

𝜎2

dm

= 𝛼 (1 − 𝛼)E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ]2

+ (2𝛼𝜇0 − 2(1 − 𝛼)𝜇𝑡 )E[𝑅(1) − 𝑅(0) |𝑊 = 𝑞𝛼 ] + 𝜎2

𝑡 + ˇ𝜎2

0
− 2𝜇𝑡 𝜇0 + Var(𝑅(0))

with 𝜇𝑡 := E[𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]], 𝜇0 := E[𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]], 𝜎2

𝑡 := Var(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]), ˇ𝜎2

0
:= Var(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ])

Using again the slightly more complex notation from the main body and the rescaled base estimator, we arrive at:



Theorem F.2. Under Assumption E.2 for 𝑍 = 𝑅(0) and 𝑍 = 𝑅(1) and Assumption E.1 for Υ(x) as well as Assumption B.3, we get:

√
𝑛

(
𝜃base

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→ N(0, 𝜎2

base)

where

𝜎2

base =
1

𝛼2

(
𝛼 (1 − 𝛼) (𝜌1 − 𝜌0)2 + (2𝛼𝜇0 − 2(1 − 𝛼)𝜇1) (𝜌1 − 𝜌0) + 𝜎2

1
+ ˇ𝜎2

0
− 2𝜇1𝜇0 + Var(𝑅(0))

)
(18)

with 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) ≤ 𝑞𝛼 ], 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) > 𝑞𝛼 ], 𝜌𝑖 = E[𝑅(𝑖) |Υ(x) = 𝑞𝛼 ], 𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) ≤ 𝑞𝛼 ]] and ˇ𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) >

𝑞𝛼 ]] for 𝑖 ∈ {0, 1} where E is taken over (x, 𝑅) ∼ 𝑃 .

Note that our assumptions are slightly different from those used in Imai and Li [14]. They require a finite third moment of the reward

(really, their proof only requires a Lyapunov condition of (2 + 𝛿)-moment control) if the active (resp. passive) action is applied, while we

only need a finite second moment. However, we require that 𝐹Υ has positive derivative at 𝑞𝛼 .

F.2 Subgroup Estimator
Under Assumption E.2 for 𝑍 = 𝑅(0) and 𝑍 = 𝑅(1) and Assumption E.1 for𝑊 as well as Assumption B.3, we can show that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
− 𝜏𝑛)

𝑑→ N(0, 𝜎2

asym
) (19)

where

𝜎2

asym
= 𝛼 (1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]2 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]2) − 2(1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝜇𝑡 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 ) + 𝜎2

𝑡 + 𝜎2

𝑐

where 𝜇𝑡 = E[𝑅1,𝑛 (1)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜇𝑐 = E[𝑅1,𝑛 (0)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜎2

𝑡 = Var[𝑅1,𝑛 (1)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜎2

𝑐 = Var[𝑅1,𝑛 (0)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]]
To do so by Theorem E.3 for𝑊 and 𝑅(1) we can conclude:

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − E[𝑅𝑖,𝑛 (1)𝐼𝐸𝑖,𝑛 ]
)
𝑑→ N(0, 𝜎2

𝑡 − 2E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝜇𝑡 (1 − 𝛼) + E[𝑅(1) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)). (20)

Similarly, for𝑊 and 𝑅(0), we get:

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
− E[𝑅0

𝑖,𝑛 (0) (1 − 𝐼𝐸0

𝑖,𝑛
)]

)
𝑑→ N(0, 𝜎2

𝑐 − 2E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 (1 − 𝛼) + E[𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)).

Combining with Theorem F.1 yields Equation (19). Translated to the notation from the main body, we get:

Theorem F.3. Under Assumption E.2 for 𝑍 = 𝑅(0) and 𝑍 = 𝑅(1) and Assumption E.1 for Υ(x) as well as Assumption B.3, we get:

√
𝑛

(
𝜃SG

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→ N(0, 𝜎2

SG)

where

𝜎2

SG =
1

𝛼2

(
𝛼 (1 − 𝛼) (𝜌2

1
+ 𝜌2

0
) − 2(1 − 𝛼) (𝜌1𝜇1 + 𝜌0𝜇0) + 𝜎2

1
+ 𝜎2

0

)
(21)

with 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) ≤ 𝑞𝛼 ], 𝜌𝑖 = E[𝑅(𝑖) |Υ(x) = 𝑞𝛼 ] and 𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) ≤ 𝑞𝛼 ]] for 𝑖 ∈ {0, 1} where E is taken over (x, 𝑅) ∼ 𝑃 .

G ADDITIONAL MATERIAL FOR SECTION 4.3: VARIANCE ESTIMATION
In this section, we construct variance estimators for the asymptotic variance terms obtained above. We start with the subgroup estimator

whose variance expression is easier and then reuse the calculations for the base estimator.

G.1 Subgroup Estimator
We again start with using the less convoluted notation from the appendix and then restate the results in terms of the notation of the main

body. Recall that the asymptotic variance in Theorem 5 is given by

𝜎2

asym
= 𝛼 (1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]2 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]2) − 2(1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝜇𝑡 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 ) + 𝜎2

𝑡 + 𝜎2

𝑐

where 𝜇𝑡 = E[𝑅1,𝑛 (1)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜇𝑐 = E[𝑅1,𝑛 (0)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜎2

𝑡 = Var[𝑅1,𝑛 (1)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]], 𝜎2

𝑐 = Var[𝑅1,𝑛 (0)𝐼 [𝑊1,𝑛 ≤ 𝑞𝛼 ]]. To
consistently estimate 𝜎2

asym
it suffices to consistently estimate each term above.

• 𝛼 is known and doesn’t need to be estimated



• 𝜇𝑡 can be consistently estimated by
1

𝑛

∑𝑛
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 . This is a simple consequence of Theorem E.3 which tells us that

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 𝜇𝑡

)
converges in distribution to a Normal distribution, which by Slutsky’s theorem implies that

1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 𝜇𝑡
𝑝
→ 0.

• The same reasoning as in the previous bullet easily shows that 𝜇𝑐 is consistently estimated by
1

𝑛

∑𝑛
𝑖=1

𝑅0

𝑖,𝑛
𝐼𝐹 0

𝑖,𝑛
.

• Now we turn to the consistent estimation of 𝜎2

𝑡 . Since we know how to consistently estimate 𝜇2

𝑡 (since we can consistently estimate

𝜇𝑡 ) it suffices to be able to consistently estimate E[𝑅2

1,𝑛
(1)𝐼𝐸1,𝑛

] .We claim that

1

𝑛

𝑛∑︁
𝑖=1

𝑅2

𝑖,𝑛𝐼𝐹𝑖,𝑛
𝑝
→ E[𝑅2

1,𝑛 (1)𝐼𝐸1,𝑛
] .

We now show this claim, again following closely Example 1.5 of [33]. First note that:

1

𝑛

𝑛∑︁
𝑖=1

𝑅2

𝑖,𝑛𝐼𝐹𝑖,𝑛 − E[𝑅2

1,𝑛 (1)𝐼𝐸1,𝑛
]

= 𝑃𝑛 (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) − 𝑃 (𝑔𝑞𝛼 ),

where here 𝑔𝑡 (𝑦, 𝑥) = 𝑦2𝐼 [𝑥 ≤ 𝑡] and 𝑃 and 𝑃𝑛 are with respect to the joint law of (𝑊𝑖,𝑛, 𝑅𝑖,𝑛 (1)). Above is
= 𝑃𝑛 (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) − 𝑃 (𝑔𝑞𝛼 )
= (𝑃𝑛 − 𝑃) (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) + 𝑃 (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) − 𝑃 (𝑔𝑞𝛼 )

Let 𝜑 (𝑡) := 𝑃 (𝑔𝑡 ). Using the same argument which showed that 𝑡 ↦→ E[𝑍𝐼 [𝑊 ≤ 𝑡]] is differentiable at 𝑞𝛼 (under Assumption E.1), we

see that 𝜑 is also differentiable at 𝑞𝛼 and so the delta method, combined with the asymptotic Normality of (𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) combined

with Slutsky’s theorem tells us that 𝑃 (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) − 𝑃 (𝑔𝑞𝛼 )
𝑝
→ 0.

As for the first term, notice that

| (𝑃𝑛 − 𝑃) (𝑔𝑊( ⌈𝛼𝑛⌉),𝑛 ) | ≤ sup

𝑡
| (𝑃𝑛 − 𝑃) (𝑔𝑡 ) |.

We will show that this goes to zero in probability.

Now, again for ease of readability, we recall a few elementary definitions from [39]:

Definition G.1 (Brackets; Definition 2.1.6 of [39]). Fix a function class G. Let ℓ and 𝑢 be two functions from R × X → R for which

ℓ ≤ 𝑢 pointwise. Then [ℓ,𝑢] is called a bracket and is defined to be the set of functions 𝑔 ∈ G for which ℓ ≤ 𝑔 ≤ 𝑢 (pointwise). An

𝜖-bracket is a bracket for which ∥ℓ − 𝑢∥ ≤ 𝜖.

Definition G.2 (Bracketing number; Definition 2.1.6 of [39]). The 𝜖 bracketing number, 𝑁 [ ] (𝜖, F , ∥ · ∥) for a function class G is the

minimum number of 𝜖-brackets required to cover G.

Definition G.3. A function class G is called Glivenko-Cantelli if

sup

𝑔∈G
| (𝑃𝑛 − 𝑃) (𝑔) |

𝑝
→ 0

Now, we recall a key theorem:

Theorem G.4 (Theorem 2.4.1 of [39]). Let G consist of measurable functions and be such that 𝑁 [ ] (𝜖,G, 𝐿1 (𝑃)) < ∞ for all 𝜖 > 0. Then
G is Glivenko-Cantelli.

Using Theorem G.4, we obtain:

Lemma G.5. We have that
sup

𝑡
| (𝑃𝑛 − 𝑃) (𝑔𝑡 ) |

𝑝
→ 0

Proof. By way of Theorem G.4, all that must be shown is that 𝑁 [ ] (𝜖,G, 𝐿1 (𝑃)) < ∞, where G = {𝑔𝑡 : 𝑡 ∈ R}.
Observe that there exists a grid 𝑡1, 𝑡2, . . . , 𝑡𝐾 for which

E[𝑅2 (1)𝐼 [𝑊 < 𝑡𝑖 ]] − E[𝑅2 (1)𝐼 [𝑊 ≤ 𝑡𝑖−1]] ≤ 𝜖
for all 𝑖 = 1, . . . , 𝐾 + 1, where 𝑡0 := −∞ and 𝑡𝐾+1 = ∞. Then [𝑔𝑡𝑖−1

, ℎ𝑡𝑖 ], with ℎ𝑡 (𝑟,𝑤) := 𝑟2𝐼 [𝑤 < 𝑡] are clearly 𝜖-brackets and they

also clearly cover all of G. □



Therefore

1

𝑛

𝑛∑︁
𝑖=1

𝑅2

𝑖,𝑛𝐼𝐹𝑖,𝑛
𝑝
→ E[𝑅2

1,𝑛 (1)𝐼𝐸1,𝑛
]

and hence

1

𝑛

𝑛∑︁
𝑖=1

𝑅2

𝑖,𝑛𝐼𝐹𝑖,𝑛 − ( 1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 )
2
𝑝
→ 𝜎2

𝑡 .

• The exact same argument as in the last bullet point (as well as the same assumption) shows that

1

𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛)
2𝐼𝐹 0

𝑖,𝑛
− ( 1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
)2

𝑝
→ 𝜎2

𝑐 .

• Now we show how to estimate E[𝑅(1) |𝑊 = 𝑞𝛼 ]
Define the estimator

�̂�𝑛 :=
1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅 (𝑖 ),𝑛

and let

𝑚(𝑤) := E[𝑅(1) |𝑊 = 𝑤]

be the true conditional mean function. Let
𝑘√

𝑛 log𝑛
→ ∞ with 𝑘/𝑛 → 0.

We will obtain a theorem (proved in the next section), that is a mild extension of Theorem 1 of [6]:

Lemma G.6. Let (𝑋𝑖 , 𝑌𝑖 ) be iid draws from some distribution. Defining �̂�𝑛 and𝑚 analogously as above (but now for the pair (𝑋,𝑌 ))
suppose additionally that:

(A1) The function𝑚 exists and is continuous in a closed neighborhood of 𝑞𝛼 . In particular, we assume that𝑚 is continuous on [𝐿0,𝑈0] ⊆ [𝐿,𝑈 ]
for some 𝐿0,𝑈0 such that 𝑞𝛼 ∈ (𝐿0,𝑈0).

(A2) We have that Var(𝑌 |𝑋 = 𝑥) is bounded by some constant𝑀 for all 𝑥 ∈ [𝐿0,𝑈0].
Then,

|�̂�𝑛 −𝑚(𝑞𝛼 ) |
𝑝
→ 0.

Hence, we have shown that �̂�𝑛 is a consistent estimate for E[𝑅(1) |𝑊 = 𝑞𝛼 ] so long as
𝑘√

𝑛 log𝑛
→ ∞ with 𝑘/𝑛 → 0.

• Just as above, we have that

1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅0

(𝑖 ),𝑛

is a consistent estimate for E[𝑅(0) |𝑊 = 𝑞𝛼 ]
Plugging all of this together, we arrive at: Then

�̂�2

asym
:=

𝛼 (1 − 𝛼)
[ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅 (𝑖 ),𝑛
ª®¬

2

+ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅0

(𝑖 ),𝑛
ª®¬

2 ]
− 2(1 − 𝛼)

[ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅 (𝑖 ),𝑛
ª®¬ · 1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖 𝐼𝐹𝑖,𝑛

+ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅0

(𝑖 ),𝑛
ª®¬ · 1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖 𝐼𝐹 0

𝑖,𝑛

]
+ 1

𝑛

𝑛∑︁
𝑖=1

𝑅2

𝑖,𝑛𝐼𝐹𝑖,𝑛 −
(

1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛

)
2

+ 1

𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛)
2𝐼𝐹 0

𝑖,𝑛
−

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛

)
2

is a consistent estimator of 𝜎2

asym
.

Formally, in the language of the main body, we conclude that (where 𝑅
𝑝

(𝑖 ) , respectively 𝑅
𝑐
(𝑖 ) , is the reward function of the agent with the

𝑖th lowest index in the policy, respectively control, arm):

Theorem G.7. In addition to the assumptions made in Theorem F.3, assume that:

(1) The functions𝑤 ↦→ E[𝑅(1) |Υ(x) = 𝑤] and𝑤 ↦→ E[𝑅(0) |Υ(x) = 𝑤] are continuous in a closed neighborhood of 𝑞𝛼 .
(2) We have that Var[𝑅(1) |Υ(x) = 𝑤] and Var[𝑅(0) |Υ(x) = 𝑤] are bounded for all𝑤 in these neighborhoods.
(3) 𝑘√

𝑛 log𝑛
→ ∞ with 𝑘/𝑛 → 0.



Then

�̂�2

SE :=
1

𝛼2

(
𝛼 (1 − 𝛼)

[ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅
𝑝

(𝑖 ) (1)
ª®¬

2

+ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅𝑐(𝑖 ) (0)
ª®¬

2 ]
− 2(1 − 𝛼)

[ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅
𝑝

(𝑖 ) (1)
ª®¬ · 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)

+ ©« 1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅𝑐(𝑖 ) (0)
ª®¬ · 1

𝑛

∑︁
𝑖∈𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

]
+ 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)2 − ©« 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)ª®¬

2

+ 1

𝑛

∑︁
𝑖∈𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

2 − ©« 1

𝑛

∑︁
𝑖∈𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

ª®¬
2 )

is a consistent estimator of 𝜎2

SE. Therefore, by Theorem F.3 and Slutsky’s theorem, we have that

√
𝑛

(
𝜃SG

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)

�̂�SE

𝑑→ N(0, 1)

G.2 Proof of Lemma G.6
We now show how to prove Lemma G.6 which is a very mild extension of Theorem 1 of [6]; the proof follows closely the one given in [6].

Lemma G.8. Let (𝑋𝑖 , 𝑌𝑖 ) be iid draws from some distribution. Defining �̂�𝑛 and𝑚 analogously as above (but now for the pair (𝑋,𝑌 )) suppose
additionally that:

(A1) The function𝑚 exists and is continuous in a closed neighborhood of 𝑞𝛼 . In particular, we assume that𝑚 is continuous on [𝐿0,𝑈0] ⊆ [𝐿,𝑈 ]
for some 𝐿0,𝑈0 such that 𝑞𝛼 ∈ (𝐿0,𝑈0).

(A2) We have that Var(𝑌 |𝑋 = 𝑥) is bounded by some constant𝑀 for all 𝑥 ∈ [𝐿0,𝑈0].
Then,

|�̂�𝑛 −𝑚(𝑞𝛼 ) |
𝑝
→ 0.

First we prove an analogue to Lemma 2 of [6]:

Lemma G.9 (Analogue of Lemma 2 of [6]). Define 𝑉𝑛 = 𝑘−1
∑⌈𝛼𝑛⌉
𝑖=⌈𝛼𝑛⌉−𝑘𝑚(𝑋 (𝑖 ),𝑛). Under (A1), we have that

|𝑉𝑛 −𝑚(𝑞𝛼 ) |
𝑝
→ 0.

Proof. Proof is basically same as that of Theorem 1 in [10]. Fix 𝜖 > 0. Choose 𝐿′
0
≥ 𝐿0,𝑈

′
0
≤ 𝑈0 close enough to𝑞𝛼 so that |𝑚(𝑥)−𝑚(𝑥 ′) | ≤

𝜖/2 for all 𝑥, 𝑥 ′ ∈ [𝐿′
0
,𝑈 ′

0
]. Then We have that

𝑃 ( |𝑉𝑛 −𝑚(𝑞𝛼 ) | > 𝜖)
= 𝑃 ( |𝑉𝑛 −𝑚(𝑞𝛼 ) | > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿′

0
,𝑈 ′

0
] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿′

0
,𝑈 ′

0
])

+ 𝑃 ( |𝑉𝑛 −𝑚(𝑞𝛼 ) | > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∉ [𝐿′
0
,𝑈 ′

0
] or 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∉ [𝐿′

0
,𝑈 ′

0
])

The second term goes to zero because both 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 converge in probability to 𝑞𝛼 under the conditions of Theorem E.3.

So, all that must be done is to handle 𝑃 ( |𝑉𝑛 −𝑚(𝑞𝛼 ) | > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿′
0
,𝑈 ′

0
] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿′

0
,𝑈 ′

0
]) which is upper bounded as

𝑃 ( |𝑉𝑛 −𝑚(𝑞𝛼 ) | > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿′
0
,𝑈 ′

0
] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿′

0
,𝑈 ′

0
])

≤ 𝑃 (𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

|𝑚(𝑋 (𝑖 ),𝑛) −𝑚(𝑞𝛼 ) | > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿′
0
,𝑈 ′

0
] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿′

0
,𝑈 ′

0
])

≤ 𝑃 (((𝑘 + 1)/𝑘) sup

𝑥∈[𝐿′
0
,𝑈 ′

0
]
|𝑚(𝑥) −𝑚(𝑞𝛼 ) | > 𝜖)

= 0

for all large 𝑘 (hence all large 𝑛) since we have chosen 𝐿′
0
,𝑈 ′

0
so that |𝑚(𝑥) −𝑚(𝑥 ′) | ≤ 𝜖/2 for all 𝑥, 𝑥 ′ ∈ [𝐿′

0
,𝑈 ′

0
]. □

Lemma G.10 (Lemma 3 of [6]). Define �̃�𝑛 := 1

𝑘

∑⌈𝛼𝑛⌉
𝑖=⌈𝛼𝑛⌉−𝑘 �̃�(𝑖 ),𝑛 where �̃�𝑖,𝑛 := 𝑌𝑖,𝑛𝐼 [|𝑌𝑖,𝑛 | ≤ 𝑛1/2] is a truncated version of 𝑌𝑖,𝑛 . If 𝑌 is

square-integrable, then we have that

|�̃�𝑛 − �̂�𝑛 |
𝑎.𝑠.→ 0

Proof. Exact same as in [6]. □



Lemma G.11 (Analogue to Lemma 4 of [6]). Assume (A1) and (A2). And define

�̃�𝑛 := 𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

E[�̃�(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] .

Then
|𝑉𝑛 − �̃�𝑛 |

𝑝
→ 0

Proof. Basically same as in [6]:

|𝑉𝑛 − �̃�𝑛 | ≤ 𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

E[|𝑌(𝑖 ),𝑛 |𝐼 [|𝑌(𝑖 ),𝑛 | > 𝑛1/2] |𝑋 (𝑖 ),𝑛]

≤ 𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑛−1/2E[𝑌 2

(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]

≤ 𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑛−1/2 (Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2)

≤ ((𝑘 + 1)/𝑘)𝑛−1/2
max

𝑖=⌈𝛼𝑛⌉−𝑘,...,⌈𝛼𝑛⌉
(Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2)

So it suffices to show that

𝑛−1/2
max

𝑖=⌈𝛼𝑛⌉−𝑘,...,⌈𝛼𝑛⌉
(Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2)

to zero.

So, we have that

𝑃 (𝑛−1/2
max

𝑖=⌈𝛼𝑛⌉−𝑘,...,⌈𝛼𝑛⌉
(Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2) > 𝜖)

≤ 𝑃 (𝑛−1/2
max

𝑖=⌈𝛼𝑛⌉−𝑘,...,⌈𝛼𝑛⌉
(Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2) > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿0,𝑈0] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿0,𝑈0])

+ 𝑃 (𝑛−1/2
max

𝑖=⌈𝛼𝑛⌉−𝑘,...,⌈𝛼𝑛⌉
(Var[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛] + E[𝑌(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛]2) > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∉ [𝐿0,𝑈0] or 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∉ [𝐿0,𝑈0])

The second term goes to zero by the convergence in probability of both 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 to 𝑞𝛼 and the first term is upper

bounded as

𝑃 (𝑛−1/2
sup

𝑥∈[𝐿0,𝑈0 ]
(Var[𝑌1,𝑛 |𝑋1,𝑛 = 𝑥] + E[𝑌1,𝑛 |𝑋1,𝑛 = 𝑥]2) > 𝜖) → 0

by employing (A1) and (A2). □

Lemma G.12 (Analogue to Lemma 5 of [6]). Assume (A1) and (A2). Then

|�̃�𝑛 − �̃�𝑛 |
𝑎.𝑠.→ 0

Proof. Basically same as in [6]:

𝑃 (�̃�𝑛 − �̃�𝑛 > 𝜖)
= E[𝑃 (�̃�𝑛 − �̃�𝑛 > 𝜖 |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛, . . . , 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛)]
= E[𝑃 (�̃�𝑛 − �̃�𝑛 > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∈ [𝐿0,𝑈0] and 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∈ [𝐿0,𝑈0] |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛, . . . , 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛)]
+ E[𝑃 (�̃�𝑛 − �̃�𝑛 > 𝜖, 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 ∉ [𝐿0,𝑈0] or 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 ∉ [𝐿0,𝑈0] |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛, . . . , 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛)]

Again, the second term tends to zero via the same argument made in the last proof since both

𝑋 ( ⌈𝛼𝑛⌉ ),𝑛
𝑝
→ 𝑞𝛼

and

𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛
𝑝
→ 𝑞𝛼 .

Thus we need only worry about the first term, which is upper bounded by

≤ sup

𝑥0,...,𝑥𝑘 ∈[𝐿0,𝑈0 ]𝑘+1

𝑃 (�̃�𝑛 − �̃�𝑛 > 𝜖 |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 = 𝑥0, . . . , 𝑋 ( ⌈𝛼𝑛⌉ )−𝑘,𝑛 = 𝑥𝑘 ),



which for any 𝛽𝑛 > 0, is at least

≤ 𝑛−𝜖𝛽𝑛 sup

𝑥0,...,𝑥𝑘 ∈[𝐿0,𝑈0 ]𝑘+1

E[exp(𝛽𝑛 log(𝑛)𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

(�̃�(𝑖 ),𝑛 − E[�̃�(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛])) |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 = 𝑥0, . . . , 𝑋 ( ⌈𝛼𝑛⌉ )−𝑘,𝑛 = 𝑥𝑘 ]

Lemma 6 of [6] shows that, since �̃�( ⌈𝛼𝑛⌉ ),𝑛, . . . , �̃�( ⌈𝛼𝑛⌉−𝑘 ),𝑛 are independent draws conditional on 𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 = 𝑥0, . . . , 𝑋 ( ⌈𝛼𝑛⌉−𝑘 ),𝑛 = 𝑥𝑘 that

E[exp(𝛽𝑛 log(𝑛)𝑘−1

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

(�̃�(𝑖 ),𝑛 − E[�̃�(𝑖 ),𝑛 |𝑋 (𝑖 ),𝑛])) |𝑋 ( ⌈𝛼𝑛⌉ ),𝑛 = 𝑥0, . . . , 𝑋 ( ⌈𝛼𝑛⌉ )−𝑘,𝑛 = 𝑥𝑘 ]

can be upper bounded as

exp

(
(𝑘 + 1) · (𝛽𝑛 log(𝑛)𝑘−1)2 ·𝑀 · 1 + 2(𝛽𝑛 log(𝑛)𝑘−1)𝑛1/2

2

)
so long as

𝛽𝑛 log(𝑛)𝑘−1 ≤ 1/
√
𝑛.

In view of the fact that 𝑘/(
√
𝑛 log𝑛) → ∞, let us set

𝛽𝑛 = min

(
(log𝑛)1/3,

√︃
𝑘/(

√
𝑛 log𝑛)

)
.

Then, it is clear that the condition that 𝛽𝑛 log(𝑛)𝑘−1 ≤ 1/
√
𝑛 is met for all large 𝑛, and we also have that

exp

(
(𝑘 + 1) · (𝛽𝑛 log(𝑛)𝑘−1)2 ·𝑀 · 1 + 2(𝛽𝑛 log(𝑛)𝑘−1)𝑛1/2

2

)
= 𝑂 (1)

So, for all large 𝑛 the above is upper bounded by, for some positive constant 𝐶 ,

𝑛−𝜖𝛽𝑛𝐶 ≤ 𝐶𝑛−2,

where the last inequality is for all 𝑛 large enough. We conclude by the first Borel-Cantelli lemma (via the summability of the series

∑
𝑛−2

) as

well as a union bound over 𝜖 = 1/ℓ , ℓ = 1, 2, . . .. □

We conclude the theorem result by combining the four above lemmas and using the triangle inequality.

G.3 Base Estimator
Using the results of Appendix G.1, it is easy to establish the following:

Theorem G.13. In addition to the assumptions made in Theorem F.2, assume that:
(1) The functions𝑤 ↦→ E[𝑅(1) |Υ(x) = 𝑤] and𝑤 ↦→ E[𝑅(0) |Υ(x) = 𝑤] are continuous in a closed neighborhood of 𝑞𝛼 .
(2) We have that Var[𝑅(1) |Υ(x) = 𝑤] and Var[𝑅(0) |Υ(x) = 𝑤] are bounded for all𝑤 in these neighborhoods.
(3) 𝑘√

𝑛 log𝑛
→ ∞ with 𝑘/𝑛 → 0.

Then

�̂�2

base :=
1

𝛼2

(
𝛼 (1 − 𝛼)

[
1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅
𝑝

(𝑖 ) (1) −
1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅𝑐(𝑖 ) (0)
]

2

+

©«2𝛼
1

𝑛

∑︁
𝑖∉𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0) − 2(1 − 𝛼) 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)ª®¬

[
1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅
𝑝

(𝑖 ) (1) −
1

𝑘

⌈𝛼𝑛⌉∑︁
𝑖=⌈𝛼𝑛⌉−𝑘

𝑅𝑐(𝑖 ) (0)
]
+

1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)2 − ©« 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)ª®¬

2

+ 1

𝑛

∑︁
𝑖∉𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

2 − ©« 1

𝑛

∑︁
𝑖∉𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

ª®¬
2

−

2
©« 1

𝑛

∑︁
𝑖∉𝜋 (X𝑐

𝑛,𝛼 )
𝑅𝑐𝑖 (0)

ª®¬ ©« 1

𝑛

∑︁
𝑖∈𝜋 (X𝑝

𝑛,𝛼 )
𝑅
𝑝

𝑖
(1)ª®¬ + 1

𝑛

𝑛∑︁
𝑖=1

(𝑅𝑐𝑖 (0) −
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑐𝑖 (0))
2

)
is a consistent estimator of 𝜎2

base. Therefore, by Theorem F.2 and Slutsky’s theorem, we have that
√
𝑛

(
𝜃base

𝑛,𝛼 (𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)

�̂�base

𝑑→ N(0, 1)



H ASYMPTOTIC NORMALITY OF HYBRID ESTIMATOR
In this section, we consider the following weighted estimator:

1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
+ �̂�𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛 (1 − 𝐼𝐹𝑖,𝑛 ) −
1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛 (1 − 𝐼𝐹 0

𝑖,𝑛
)
)

where the (data-dependent) weight �̂�𝑛 is allowed to depend arbitrarily on all of the data and may take any real value; all that we will assume

is that it converges in probability to some deterministic quantity 𝑤∗
. Notice that �̂�𝑛 ≡ 0 recovers the subgroup estimator while �̂�𝑛 ≡ 1

recovers the base estimator.

We aim to show that the following display is asymptotically normal:

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
− 𝜏𝑛

)
+ �̂�𝑛 ·

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛 (1 − 𝐼𝐹𝑖,𝑛 ) −
1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛 (1 − 𝐼𝐹 0

𝑖,𝑛
)
)

(22)

Henceforth we will choose �̂�𝑛 so that it converges to some quantity𝑤∗
in probability (i.e., �̂�𝑛

𝑝
→ 𝑤∗

); indeed this property is satisfied

both by the base and subgroup estimators. We will derive the optimal choice of𝑤∗
and then say how to choose �̂�𝑛 .

We will make the following mild assumption which ensures the existence of such an optimal𝑤∗
:

Assumption H.1 (Positive variance of the conditional mean). Var(E[𝑅𝑖,𝑛 (0) |𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]]) > 0.

This assumption essentially says that, upon revealing 𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ], there is still “randomness” left in 𝑅𝑖,𝑛 (0).
Under the same assumptions as Theorem E.3, essentially the exact same proof of Theorem E.3 allows us to show that, defining 𝜇𝑡 :=

E[𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]], 𝜇0 := E[𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]],

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − E[𝑅𝑖,𝑛 (1)𝐼𝐸𝑖,𝑛 ])

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) + E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )
√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
+ 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

Completely analogously:

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
− E[𝑅0

𝑖,𝑛 (0)𝐼𝐸0

𝑖,𝑛
])

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ] − E[𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ]]) −
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

Similarly, by using a proof strategy nearly identical to Theorem E.3, we obtain that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0) (1 − 𝐼𝐹𝑖,𝑛 ) − E[𝑅𝑖,𝑛 (0) (1 − 𝐼𝐸𝑖,𝑛 )])

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) − E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )
√
𝑛(𝑊( ⌈𝛼𝑛⌉ ),𝑛 − 𝑞𝛼 ) + 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝐹 ′𝑊 (𝑞𝛼 )

√
𝑛

𝑛∑︁
𝑖=1

𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼
𝐹 ′
𝑊

(𝑞𝛼 )
+ 𝑜𝑝 (1)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

And, completely analogously,

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0) (1 − 𝐼𝐹 0

𝑖,𝑛
) − E[𝑅0

𝑖,𝑛 (0) (1 − 𝐼𝐸0

𝑖,𝑛
)])



=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0)𝐼 [𝑊
0

𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼) + 𝑜𝑝 (1)

Therefore, using Theorem F.1, the LHS of display (22) may be rewritten as

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛𝐼𝐹𝑖,𝑛 − 1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛𝐼𝐹 0

𝑖,𝑛
− 𝜏𝑛

)
+ �̂�𝑛 ·

√
𝑛

(
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖,𝑛 (1 − 𝐼𝐹𝑖,𝑛 ) −
1

𝑛

𝑛∑︁
𝑖=1

𝑅0

𝑖,𝑛 (1 − 𝐼𝐹 0

𝑖,𝑛
)
)

=
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

−
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ] − E[𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ]]) −
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)
)

+ �̂�𝑛
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

−
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0)𝐼 [𝑊
0

𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)
) )

+ 𝑜𝑝 (1)

It is not hard to see that

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

−
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0)𝐼 [𝑊
0

𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)
)

converges in distribution to a Normal distribution (indeed we will show it’s joint asymptotic Normality with the first term shortly), and

hence Slutsky’s theorem easily shows that the previous display is asymptotically equal to the same thing with �̂�𝑛 replaced by𝑤∗
:

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

−
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ] − E[𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ]]) −
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)
)

+𝑤∗
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

−
(

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0)𝐼 [𝑊
0

𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0) +
E[𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)
) )

+ 𝑜𝑝 (1)

Combining terms from treatment group into one term and from control group into another, we rewrite the above as[
1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡 ) −
E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)

+𝑤∗ · 1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0)
]

−
[

1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ] − E[𝑅0

𝑖,𝑛𝐼 [𝑊
0

𝑖,𝑛 ≤ 𝑞𝛼 ]]) −
E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]√

𝑛

𝑛∑︁
𝑖=1

(𝐼 [𝑊 0

𝑖 ≤ 𝑞𝛼 ] − 𝛼)

+𝑤∗ · 1

√
𝑛

𝑛∑︁
𝑖=1

(𝑅0

𝑖,𝑛 (0)𝐼 [𝑊
0

𝑖,𝑛 > 𝑞𝛼 ] − 𝜇0)
]

As the two bracketed terms are independent, it suffices to show their asymptotic Normality separately and then to sum their variances.

As for the first term, define 𝜎2

𝑡 := Var(𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ]), ˇ𝜎2

0
:= Var(𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ]), we obtain that:

1

√
𝑛

𝑛∑︁
𝑖=1

©«
𝑅𝑖,𝑛 (1)𝐼 [𝑊𝑖,𝑛 ≤ 𝑞𝛼 ] − 𝜇𝑡

𝑤∗𝑅𝑖,𝑛 (0)𝐼 [𝑊𝑖,𝑛 > 𝑞𝛼 ] −𝑤∗𝜇0

−E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ] (𝐼 [𝑊𝑖 ≤ 𝑞𝛼 ] − 𝛼)
ª®¬



𝑑→ N (0, Σ)
where Σ is

©«
𝜎2

𝑡 −𝑤∗𝜇𝑡 𝜇0 −E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑡 (1 − 𝛼)
−𝑤∗𝜇𝑡 𝜇0 𝑤∗2 ˇ𝜎2

0
𝛼𝑤∗E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

−E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑡 (1 − 𝛼) 𝛼𝑤∗E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0 E[𝑅(1) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)

ª®®¬
As for the second term, we obtain that

1

√
𝑛

𝑛∑︁
𝑖=1

©«
𝑅0

𝑖,𝑛
𝐼 [𝑊 0

𝑖,𝑛
≤ 𝑞𝛼 ] − 𝜇𝑐

𝑤∗𝑅0

𝑖,𝑛
(0)𝐼 [𝑊 0

𝑖,𝑛
> 𝑞𝛼 ] −𝑤∗𝜇0

−E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ] (𝐼 [𝑊 0

𝑖
≤ 𝑞𝛼 ] − 𝛼)

ª®®¬
𝑑→ N

(
0, Σ′

)
where Σ′ is

©«
𝜎2

𝑐 −𝑤∗𝜇𝑐𝜇0 −E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 (1 − 𝛼)
−𝑤∗𝜇𝑐𝜇0 𝑤∗2 ˇ𝜎2

0
𝛼𝑤∗E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

−E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 (1 − 𝛼) 𝛼𝑤∗E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0 E[𝑅(0) −𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)

ª®®¬
The continuous mapping theorem (along with the independence that we observed earlier) then says that the asymptotic variance of our

estimator is equal to the sum of each term in the above matrices which is

𝑤∗2

[
2𝛼 (1 − 𝛼)E[𝑅(0) |𝑊 = 𝑞𝛼 ]2 + 2

ˇ𝜎2

0
− 4𝛼E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

]
+𝑤∗

[
− 2(𝜇𝑡 + 𝜇𝑐 )𝜇0 + 2(𝜇𝑡 + 𝜇𝑐 )E[𝑅(0) |𝑊 = 𝑞𝛼 ] (1 − 𝛼) + 2𝛼𝜇0

(
E[𝑅(1) |𝑊 = 𝑞𝛼 ]

+ E[𝑅(0) |𝑊 = 𝑞𝛼 ]
)
− 2𝛼 (1 − 𝛼)E[𝑅(0) |𝑊 = 𝑞𝛼 ] (E[𝑅(1) |𝑊 = 𝑞𝛼 ] + E[𝑅(0) |𝑊 = 𝑞𝛼 ])

]
+

[
𝜎2

𝑡 + 𝜎2

𝑐 − 2(1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝜇𝑡 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 ) + 𝛼 (1 − 𝛼)
(
E[𝑅(1) |𝑊 = 𝑞𝛼 ]2 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]2

) ]
Now, write

𝐴 =

[
2𝛼 (1 − 𝛼)E[𝑅(0) |𝑊 = 𝑞𝛼 ]2 + 2

ˇ𝜎2

0
− 4𝛼E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

]
and

𝐵 =

[
− 2(𝜇𝑡 + 𝜇𝑐 )𝜇0 + 2(𝜇𝑡 + 𝜇𝑐 )E[𝑅(0) |𝑊 = 𝑞𝛼 ] (1 − 𝛼) + 2𝛼𝜇0

(
E[𝑅(1) |𝑊 = 𝑞𝛼 ]

+ E[𝑅(0) |𝑊 = 𝑞𝛼 ]
)
− 2𝛼 (1 − 𝛼)E[𝑅(0) |𝑊 = 𝑞𝛼 ] (E[𝑅(1) |𝑊 = 𝑞𝛼 ] + E[𝑅(0) |𝑊 = 𝑞𝛼 ])

]
So long as we can show that 𝐴 > 0, it is quite clear that differentiating wrt𝑤∗

and setting equal to zero, we see that the optimal choice of

𝑤∗
is then

−𝐵
2𝐴

. Furthermore, it is quite clear how to consistently estimate𝑤∗
since we have shown how to consistently estimate each term in

𝐴 and 𝐵.

To see that 𝐴 > 0, consider a coupling to our problem of random variables (�̃�𝑖,𝑛, �̃�𝑖,𝑛 (0), �̃�𝑖,𝑛 (1)) and (�̃� 0

𝑖,𝑛
, �̃�0

𝑖,𝑛
(0), �̃�0

𝑖,𝑛
(1)) where we set

�̃�𝑖,𝑛 =𝑊𝑖,𝑛,�̃�
0

𝑖,𝑛 =𝑊 0

𝑖,𝑛, �̃�𝑖,𝑛 (0) = 𝑅𝑖,𝑛 (0), �̃�
0

𝑖,𝑛 (0) = 𝑅
0

𝑖,𝑛 (0), �̃�
0

𝑖,𝑛 (1) = 𝑅
0

𝑖,𝑛 (1),

but �̃�𝑖,𝑛 (1) ≡ 0 (i.e., so everything is the same except that we set �̃�𝑖,𝑛 (1) ≡ 0). It is clear that in this data-generating process, the covariance

matrix for ©«
�̃�𝑖,𝑛 (1)𝐼 [�̃�𝑖,𝑛 ≤ 𝑞𝛼 ]

𝑤∗�̃�𝑖,𝑛 (0)𝐼 [�̃�𝑖,𝑛 > 𝑞𝛼 ] −𝑤∗𝜇0

−E[−𝑤∗𝑅(0) |𝑊 = 𝑞𝛼 ] (𝐼 [�̃�𝑖 ≤ 𝑞𝛼 ] − 𝛼)

ª®¬
is𝑤∗2Σ̃ where Σ̃ is



©«
0 0 0

0
ˇ𝜎2

0
𝛼E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

0 𝛼E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0 E[−𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)

ª®®¬
Noticing that 𝐴 = 2(0, 1, 1)Σ̃(0, 1, 1)⊤ it suffices to show that the bottom right submatrix(

ˇ𝜎2

0
𝛼E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0

𝛼E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇0 E[−𝑅(0) |𝑊 = 𝑞𝛼 ]2𝛼 (1 − 𝛼)

)
is (strictly) positive definite (observe that, because it is a covariance matrix, it is automatically positive semi-definite). In case E[𝑅(0) |𝑊 =

𝑞𝛼 ] = 0 it is already immediate that 𝐴 is strictly positive, since
ˇ𝜎2

0 is. Thus, consider the case when E[𝑅(0) |𝑊 = 𝑞𝛼 ] ≠ 0. Then the diagonal

terms of the above matrix are non-zero and by computing the determinant and rearranging, we see that if the determinant is zero, then

Corr

(
�̃�𝑖,𝑛 (0)𝐼 [�̃�𝑖,𝑛 > 𝑞𝛼 ],−E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝐼 [�̃�𝑖 ≤ 𝑞𝛼 ]

)
= ±1,

which occurs if and only if �̃�𝑖,𝑛 (0)𝐼 [�̃�𝑖,𝑛 > 𝑞𝛼 ] and −E[−𝑅(0) |𝑊 = 𝑞𝛼 ]𝐼 [�̃�𝑖 ≤ 𝑞𝛼 ] are related in an affine manner, which is not the case per

Assumption H.1. Therefore, the matrix is psd with non-zero determinant, hence positive-definite and 𝐴 is strictly positive as desired.

Variance estimation. Define

𝐶 =

[
𝜎2

𝑡 + 𝜎2

𝑐 − 2(1 − 𝛼) (E[𝑅(1) |𝑊 = 𝑞𝛼 ]𝜇𝑡 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]𝜇𝑐 ) + 𝛼 (1 − 𝛼)
(
E[𝑅(1) |𝑊 = 𝑞𝛼 ]2 + E[𝑅(0) |𝑊 = 𝑞𝛼 ]2

) ]
.

Then with the above choice of𝑤∗
, the asymptotic variance shown in the previous section is equal to

𝐵2 − 4𝐴𝐶

−4𝐴
.

Again, we have already shown how to estimate each term already and hence the variance can be consistently esimated.

Remark H.2 (Optimality). Notice that for the base estimator we have �̂�𝑛 ≡ 𝑤∗ = 1 and for the subgroup estimator, they have �̂�𝑛 ≡ 𝑤∗ = 0.

This means that the above theory can be used to applied to those estimators and in particular, shows that our choice of �̂�𝑛 is asymptotically

always at least as good (and will indeed will result in a strictly smaller confidence interval (asymptotically) as compared to both of these

approaches so long as𝑤∗ ≠ 0 or 1).

H.1 Putting it Together
Summarizing and translating to the notation of the main body we arrive at the following. Recall that, for any consistent estimator �̂�𝑛 of

some quantity𝑤 , we define the hybrid estimator as

𝜃
hyb

𝑛,𝛼,�̂�
(𝜋) := (1 − �̂�𝑛) · 𝜃SG

𝑛,𝛼 (𝜋) + �̂�𝑛 · 𝜃base

𝑛,𝛼 (𝜋) .

Let (where E is taken over (x, 𝑅) ∼ 𝑃 ):

𝐴 =

[
2𝛼 (1 − 𝛼)E[𝑅(0) |Υ(x) = 𝑞𝛼 ]2 + 2

ˇ𝜎2

0
− 4𝛼E[𝑅(0) |Υ(x) = 𝑞𝛼 ]𝜇0

]
and

𝐵 =

[
− 2(𝜇𝑡 + 𝜇𝑐 )𝜇0 + 2(𝜇𝑡 + 𝜇𝑐 )E[𝑅(0) |Υ(x) = 𝑞𝛼 ] (1 − 𝛼) + 2𝛼𝜇0

(
E[𝑅(1) |Υ(x) = 𝑞𝛼 ]

+ E[𝑅(0) |Υ(x) = 𝑞𝛼 ]
)
− 2𝛼 (1 − 𝛼)E[𝑅(0) |Υ(x) = 𝑞𝛼 ] (E[𝑅(1) |Υ(x) = 𝑞𝛼 ] + E[𝑅(0) |Υ(x) = 𝑞𝛼 ])

]
and

𝐶 =

[
𝜎2

𝑡 + 𝜎2

𝑐 − 2(1 − 𝛼) (E[𝑅(1) |Υ(x) = 𝑞𝛼 ]𝜇𝑡 + E[𝑅(0) |Υ(x) = 𝑞𝛼 ]𝜇𝑐 ) + 𝛼 (1 − 𝛼)
(
E[𝑅(1) |Υ(x) = 𝑞𝛼 ]2 + E[𝑅(0) |Υ(x) = 𝑞𝛼 ]2

) ]
,

with 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) ≤ 𝑞𝛼 ], 𝜇𝑖 = E[𝑅(𝑖))𝐼 [Υ(x) > 𝑞𝛼 ], 𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) ≤ 𝑞𝛼 ]] and ˇ𝜎2

𝑖
= Var[𝑅(𝑖)𝐼 [Υ(x) > 𝑞𝛼 ]] for 𝑖 ∈ {0, 1}



Theorem H.3. Under Assumption E.2 for 𝑍 = 𝑅(0) and 𝑍 = 𝑅(1) and Assumption E.1 for Υ(x) as well as Assumption B.3, for any sequence

�̂�𝑛
𝑝
→ 𝑤 , we get:

√
𝑛

(
𝜃

hyb

𝑛,𝛼,�̂�
(𝜋) − 𝜏new

𝑛,𝛼 (𝜋)
)
𝑑→ N(0, 𝜎2

hyb(𝑤 ) )
where

𝜎2

hyb(𝑤 ) =
1

𝛼2
(𝑤2𝐴 +𝑤𝐵 +𝐶) (23)

We have that𝑤∗
:= −𝐵

2𝐴
= arg min𝑤∈R 𝜎

2

hyb(𝑤 ) . If we additionally, assume that:

(1) The functions𝑤 ↦→ E[𝑅(1) |Υ(x) = 𝑤] and𝑤 ↦→ E[𝑅(0) |Υ(x) = 𝑤] are continuous in a closed neighborhood of 𝑞𝛼 .
(2) We have that Var[𝑅(1) |Υ(x) = 𝑤] and Var[𝑅(0) |Υ(x) = 𝑤] are bounded for all𝑤 in these neighborhoods.
(3) 𝑘√

𝑛 log𝑛
→ ∞ with 𝑘/𝑛 → 0,

using the consistent estimators for each term of 𝐴, 𝐵, 𝐶 from Appendix G, we can construct a sequence �̂�∗
𝑛 for which �̂�∗

𝑛

𝑝
→ 𝑤∗ and also we can

derive a consistent estimate �̂�2

hyb(𝑤∗ ) of 𝜎
2

hyb(𝑤∗ )
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