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ABSTRACT
India has rich cultural diversity which reflected in its variety of
food. In recent years, Computer vision has played a key role in
classify food images for automated tagging, nutrition profiling
and many other tasks. However, the existing state-of-the-art AI-
based food classification models trained on global food images
have subpar performance on Indian food images. This is due to
the lack of representation of Indian food in existing food datasets
and unique image classification challenges specific to Indian food,
such as cuisines having multiple dishes within a single image and
regional fine grained varieties of the dishes. To address these chal-
lenges, a dataset with 30K food images consisting of popular dishes
from restaurant menus across India was curated and annotated
with multi-label and fine-grained labels for each dish in the image.
All the dishes were mapped onto a hierarchical tree which models
a categorical breakdown of Indian food. Custom loss function was
tuned to learn from hierarchical and multi-label information con-
tained in the Indian food images. Augmenting our loss on existing
methods gives 13% improvement on average AUPRC and shows
better classification performance on Indian food dataset compared
to state of art food classification models with comparable results
for other food benchmark datasets.

More than 100k photos which are submitted each day on Google
Maps on Indian restaurants and many more on social media chan-
nels were utilized for the project.
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1 INTRODUCTION
Food and nutrition have long played a crucial role in people’s daily
lives. In recent years, the pervasive nature of mobile devices has
begun to redefine how we manage our food consumption facili-
tated by technology. With the advent of camera based smartphones,
millions of pictures and videos of food are uploaded each day on
numerous surfaces on the internet. These are often not tagged with
the dish and relying on manual labelling is not scalable. Automated
detection of food images provides scalable indexing and searching,
making it easier to find relevant images, restaurants and blogs. In
addition, many meal logging applications exist to help individuals
monitor their eating patterns. These mobile applications elicit meal
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information including type and time of the meal. However, the pri-
mary method of this data collection is through text. Prior research
has shown how this data collection can quickly turn tedious[28].
Identifying the food also helps in mapping the nutritional value of
the food in many health applications. Automated food identifica-
tion through images has thus emerged as an important domain for
enabling healthy lifestyle changes.

Computer vision techniques have been used in food identifica-
tion from images[20, 25, 32, 57] and videos, food volume estimation
with sensors[32], segmentation of food images[32] and learning
from recipes [31]. These techniques require supervised training
data to learn and generalize to unseen images. Prior works have
curated several datasets[16, 22, 31, 32] and developed approaches
to tackle the problem of automated food identification. However,
most existing datasets and techniques have focused exclusively
on Western food, with exceptions of Banerjee, Rajayogi et al. and
Nayak et al..

Indian food, in particular, consists of a variety of highly diverse
regional cuisines under-represented in public food image datasets.
Different states and regions within India have their unique styles of
cooking, ingredients, and flavors, influenced by culinary traditions
spanning centuries. Indian food draws on several staple ingredients
such as rice, lentils, wheat, as well as spice combinations (e.g.,
cumin, turmeric, coriander). Furthermore, an Indian meal typically
comprises of multiple items served simultaneously, such as lentils,
rice, breads, and chutneys, in contrast to other cuisines that have a
sequential meal structure starting from appetizer, to main course,
to dessert.

To understand the performance of these models on Indian food
images, we conducted preliminary annotation experiments to qual-
itatively assess the performance of Google Lens on Indian dishes.
Google Lens is an image recognition software that was released
in 2017 by Google and is now available in most smartphones. We
collaborated with 10 annotators to label food in 100-150 images
for 13 popular Indian dishes. Many of these images had multiple
dishes in each image. For each displayed image, raters were asked
mark the prominent and non-prominent (side dishes) along with
confidence. Raters were asked to identify the most prominently
present dish from the given options (coarse and then fine-grained
label per dish) on Likert scale (min: 1, max: 5). Once a coarse label is
added, options for the respective fine-grained labels were displayed
in the next dropdown. Post data analysis of rated images, we found:
(1) Overall ratings showed poor accuracy (less than 50%) when
using a generic food classifier on Indian dishes across all 13 dishes.
(2) Ratings based on granularity of the identified dish showed that
most of the dishes were classified at coarser level than desired (40%
of correctly classified dishes were identified at fine-grained level).
(3) Ratings also showed that most of the identification focused on
the main dish in the plate leaving many side dishes unidentified.
(Less than 25% of multi dish plate classified correctly).



Identifying fine-grained labels and making better mistakes are
important to improve the user experience in search and nutritional
health applications. Detecting the non-prominent side dishes is im-
portant in nutrition mapping and the ability to search images with
multiple dishes. The paper addresses the problems found in UXR
study in Indian food image classification by developing hierarchy-
aware multi-label classification algorithm. This improves the fine-
grained classification while identifying multiple dishes in the plate.
Overall, the key contributions contributions of this study are as
follows:

• Creating an multi-rater annotated dataset of 26k images
across 137 Indian food dishes, distilled from restaurantmenus
along with hierarchical relation among dish labels.

• Developing a methodology for fine-grained and multi-label
classification using the hierarchy information and multi-
label annotations.

• Showcase better classification accuracy over state-of-the-
art food classification models trained on both Indian and
non-Indian food image datasets.

2 RELATEDWORK
Digital platforms like smartphones and wearables are having an
increasing impact on lifestyle and well-being: physical activity, nu-
trition and sleep [53, 54]. Smartphones sensors like cameras are em-
powering users access searchable multimodal content across videos,
images and text[23, 59]. Cameras have increasingly been used in
food and nutrition science with advances in deep learning[57, 58].
Machine learning methods have been used for food identification
from images[25, 26, 44], videos [8, 24], food volume estimation with
sensors [26], segmentation of food images [20, 51], and learning
from recipes [22, 31]. The performance of these algorithms on new
examples depend on the training dataset and annotation[16, 33].
As a result, it is important to have sufficient representation of food
images in training these systems to match use cases, region and
culture. Food classification models have been adapted to specific
cuisines by curating specialized datasets[10, 15] and developing
algorithms to enhance localization in APAC regions[27, 37, 52, 56].
India has a rich cultural diversity of food with many centuries of
influence. The Indian food image datasets[2, 36] and methods[40]
are limited to a few dishes with no customization to the uniqueness
of Indian food images.

Indian cuisine has multiple adaptations of popular dishes based
on local regions which demand fine-grained classification [5]. Fur-
thermore, most Indian food plates consist of many dishes. Our work
brings the hierarchy and multi-label adaptation of deep learning
based methods to Indian food images and develops comprehensive
solutions for uniqueness of the Indian dishes. Previous work in
multi-label classification has been around exploiting label correla-
tion via graph neural networks [11, 12, 19] or word embeddings
[13, 49]. Others are based on modeling image parts and attentional
regions [21, 55], and using recurrent neural networks[34, 48], em-
bedding space constraints, [39] region sampling [60]. Methods are
proposed to incorporate hierarchical knowledge to single-label
classifiers to add additional semantics to the models’ learning capa-
bilities such that when the model makes mistakes, it makes semanti-
cally better mistakes. Hierarchical information is important inmany

other applications such as food recognition [29, 50], protein func-
tion prediction [3, 4, 6], image annotation [18], text classification
[30, 42, 43]. There has also been some recent work in hierarchical
multi-label text classification [7, 9, 17, 30, 43].

3 METHODOLOGY
At present, there are no large scale open dataset dedicated for Indian
images. Dataset consisting of images of Indian dishes is created for
training and evaluation of Indian food classification models. Identi-
fying the set of dish names and collecting images for the selected
Indian dishes are the key steps in creating the dataset. Choices for
selecting the dish types and the image source are aligned with iden-
tification of dishes from food images uploaded from restaurants in
India on platforms like Google Maps restaurant reviews. The choice
of the dish types and image source are for illustration of our meth-
ods on a generic application and not representative of the diversity
or popularity of dishes in the country. The data collection strategy,
number of dishes to be classified, number of images collected for
each dish type can be swapped with any method tailored to the
specific application of the food identification model. The following
three subsections describe the label selection and curation process,
also the food dataset creation. We then utilized hierarchy-aware
multi-label classification algorithm in order for better Indian food
classification.

3.1 Food Label Curation
Following methodology was adapted for the selection of top 200
dishes:

• 500 top restaurants were identified based on 4+ ratings on
Google Maps with the highest number of reviews in popular
cities across India. The restaurants were evenly distributed
across 26 (out of 28) states in India with average number of
reviews per restaurant 25000+ and 4.3+ rating out of 5. The
restaurants ranged across franchises like McDonald’s, local
favorites and popular Indian chain restaurants.

• Menu Image was extracted from Google Maps for each of
the 500 restaurants. Google OCR (Document AI) was used
to digitize the menu image to extract the dishes served in
the restaurant.

• Each dish name is preprocessed to correct for spelling cor-
rection and capitalization. N-gram phrase frequency is calcu-
lated for each dish type. We took the top 200 most frequent
Indian food names as labels for creating the Image dataset.

• This method was aligned to identify most commonly occur-
ring dishes among a diverse set of restaurants across various
states in India. This serves as a proxy for commonly available
dish types ordered in restaurants by Indians.

3.2 Distillation of Food labels
We collected a set of 235 unique food dishes labels from top-rated
restaurant menus across India. However, the most common dishes
from top-rated Indian restaurants contained several dishes that
were clearly not of Indian origin, such as cheese dip, steak, and
waffles. This added an additional challenge to the filtration process
as many Indian restaurants have adopted dishes from other cultures,
resulting in hybrid dishes that may not be easily classified as either
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Figure 1: A flowchart of the food label and food image dataset curation process

Indian or foreign. As exemplified by the growing number of fast
food chains to high end global cuisines appearing in the urban cities
of India[14].

To create a more focused dataset of Indian food, we assembled a
team of four native Indians to review the dish names and remove
any that were not of Indian origin. With these adaptations to global
cuisine, there have been more hybrid dishes that are mixture of
authentic Indian food and strong external influences such as cheese
pav, veg sandwiches and many more.

The team of 4 did their best to filter out any dishes that would
not be considered Indian dishes (i.e., chocolate brownie, honey
chili fries, etc.). In the cases of dishes with uncertain origin or
broad classification, such as “corn chilly” and “curd”, we consulted
culinary experts. This resulted in a further removal of 19 labels.

At last, The final dataset of 137 unique Indian food labels was
curated. These labels represent a wide range of Indian cuisine,
from traditional dishes such as tandoori chicken and idli to more
modern fusion dishes such as cheese pav and veg sandwiches. The
label set will be referred to as IndiaLabel-137 in the paper. Figure 1
summarizes the steps involved in dataset and label set curation.

3.3 Food images collection and annotation
The following methodology was adopted to collect the images of
identified 137 list:

Images are sourced from the user uploaded food images on
Google Maps for the 500 preselected restaurants, which were used
to gather the food labels. Which resulted in a total of roughly 53,400
images, with machine labels. In which, we discarded the dataset of
all the labels that weren’t on the final IndiaLabel-137. This resulted
in 35,500 images that were applicable, which were sent to human
annotation. Then, raters manually labeled food images from the

image dataset and skipped images which were blurry, had PII (Per-
sonal Identifiable Information) or wasn’t able to be identified with
a fine-grained label.

This process resulted around 26,500 images with good image
quality from the IndiaLabel-137 and around 8,200 images were
skipped.

The image dataset will henceforth be referred to as IndiaFood26K
in the paper. Dataset reflects images taken in restaurant settings
which are well decorated and arranged compared to home cooked
food. We expect models trained on IndiaFood26K to generalize
to restaurant uploaded images which would aid in automatically
tagging images to support better user experience in identifying
relevant restaurants on the web. They may also generalize to aid
digital apps for online food delivery, identifying new dishes served
in Indian restaurants but may not work well for home cooked meals.

3.3.1 Annotation Process. The annotation process for our Indian
food image dataset was designed to be robust, reliable, efficient,
and scalable. To address the challenge of multiple food items being
present in a single image, a multi-label and multi-rater approach
was used. The dataset contains 137 food labels, with approximately
250 images per label, for a total of approximately 35,000 images.
Two rounds of human annotation were conducted, with each image
being annotated by a single annotator in each round.

3.3.2 Labeling tool description and rater profiles and matching. The
image annotation user interface (UI) is a critical tool for ensuring
the quality and accuracy of image annotation. The UI provides
annotators with a convenient and efficient way to label images, and
it also collects valuable feedback on the quality of the image data.

The UI consists of three main components: the image, two drop-
down menus for labeling, and two multiple choice questions on
image quality and image label completeness.



Figure 2: India food classification pipeline

The image 15 is displayed on the right-hand side of the UI. It is
large enough to be easily viewed, and it is accompanied by a skip
button that allows annotators to skip the image if they are unable
to label it. The skip button also includes a dropdown menu with
reasons for skipping: "Unable to identify the exact fine-grained
label," "Unable to identify the dish at all," "Image contains text /
caption / watermark of the label in it," “Image contains packaged
food /canned food / food mixture,” or “Image does not contain a
food dish.”

The two dropdown menus on the left-hand side of the UI allow
annotators to label the image with precision and accuracy. The
first menu is for fine-grained labeling, and it contains a dropdown
section of the 137 food labels. An auto-complete feature helps to
streamline the annotating experience, as annotators are not required
to type out the entire name of the food to annotate the image with
the dish name. The second dropdown menu records the annotator’s
confidence level between low or high depending on how well the
label matches the image.

The multiple choice questions at the bottom of the UI allow
annotators to provide feedback on the quality of the image and
the label set. The first question, "Quality of Image?", assesses the
image quality with the following options: "Good," "Low resolution,"
"Unclear / blurry," or "Noisy with perturbations." The second ques-
tion, "How many dishes were labeled in this image?", measures the
competence of the label set with the following options: "Are all
dishes in the image tagged," "More than half which is 50% of the
dishes are tagged," or "Less than half which is 50% of the items are
tagged in the image."

3.3.3 Hierarchical tree creation. To improve the accuracy of AI-
based Indian food classification, we sought to create a label set of
fine-grained classifications structured within a hierarchical tree.
The goal behind this creation is to assist AI systems in making

better mistakes by having inherent semantic knowledge through
the hierarchy [50]. Leveraging this inherent trait within hierarchies,
we hope to close the gap in the accuracy of identifying Indian food
images.

Due to the nuance of creating a hierarchy to assist AI systems
with the goal of providing semantic information, we had to start
from the ground to develop the bin. [38, 41] To gain a deeper un-
derstanding of how to create appropriate categories within Indian
food, we first consulted with a culinary expert with over 20 years of
experience in the field. We wanted to understand Indian food from
their perspective and glean insights into how to generally structure
the hierarchy.

The culinary expert informed us that Indian food can be broadly
divided into two regional categories: North Indian and South Indian.
This distinction is based on the distinct regional meal staples and
corresponding visual differences between dishes from those regions.
Although there are finer distinctions between East and West Indian
cuisine, we found that the meals that we had narrowed down were
better categorized with North and South, and that there would be
no added benefit in distinguishing further with our current data
[47].

At the second level of distinction, we made the separation be-
tween vegetarian and non-vegetarian. This distinction is important
to ensure that vegetarian food does not get confused with non-
vegetarian food. In India, there is a cultural significance to this
distinction, as vegetarians tend to dislike their food being mistaken
for non-vegetarian food. Therefore, we prioritized the distinction
between veg and non-veg [35].

To implement these first two insights, we conducted a multi-
rater process of manually labeling 137 food dishes as either North
or South Indian, and as either vegetarian or non-vegetarian. We
assembled a group of five non-expert Indians, two of whom were



Figure 3: HMC Loss function example

North Indian, two of whom were South Indian, and one of whom
was East Indian. We then classified each food label through a ma-
jority vote. Although this process was not perfect, it gave us an
indication of whether a dish was North or South, and whether it
was vegetarian or non-vegetarian.

After the multi-rater process, we further broke down the four
high-level labels (North Indian, South Indian, vegetarian, and non-
vegetarian) into more specific multi-labels. At this third level, we
identified the specific type of dish the food would be categorized
in, such as curries, sides, and drinks for vegetarian dishes. This
distinction only affected vegetarian dishes, as non-vegetarian dishes
fell into either starters or main dishes. The distinction between
curries and sides was key to understanding the Indian staple of
eating curry with roti or rice. This applies to non-vegetarian curries
as well, which have an accompaniment of rice or roti.

3.4 ML Methodology
We propose to use the CHAMP[45] loss function that leverages the
hierarchical relationships in the dataset and can easily be plugged
into existing models and backbones. The loss function is described
in Section 3.4.1 and evaluation methods are discussed in Section
3.4.2

3.4.1 Loss Function. LetD represent the training data distribution.
We draw samples (𝑥,𝑦) from D where 𝑥 ∈ R𝑑 denotes the input
and 𝑦 ∈ R𝐿 denotes a binary vector of labels where one (zero) at
position j indicates the presence (absence) of the class j. Let \ denote
the set of parameters. Let 𝑦 ∈ R𝐿 denote the vector of predicted
class probabilities in the same order as 𝑦. The standard baseline for
training multi-label classifiers is to predict probabilities for each
class independently and minimize the binary cross entropy of each
predictor. The instance-level loss for the standard baseline would
be:

𝐽 (𝑥,𝑦;\ ) = −
𝐿∑
𝑗=1

𝑦 𝑗 log𝑦 𝑗 + (1 − 𝑦 𝑗 ) log(1 − 𝑦 𝑗 )

We incorporate hierarchy 𝑇 into the method by expanding the
label set to include non-leaf nodes of the hierarchy. To add positive
examples for the internal nodes, we alter the ground-truth sets of
each sample to include all the ancestors of every leaf label in the set.
This reduces the hierarchical classification problem to a standard
multi-label classification over an expanded label set. This serves as
our hierarchical baseline.

To make more efficient use of the hierarchical information, we
weigh the 𝐿 loss terms differently for each instance. Given an in-
stance, the weight for the term corresponding to class j is pro-
portional to the path distance between that class and the closest
ground-truth to it in the hierarchy. The modified loss function is:

𝐽 (𝑥,𝑦;\ ) = −
𝐿∑
𝑗=1

𝑦 𝑗 log𝑦 𝑗 + (1 − 𝑦 𝑗 ) (1 + 𝑠 ( 𝑗, 𝑦)) log(1 − 𝑦 𝑗 )

where 𝑠 is the instance-specific class weight. It is defined as:

𝑠 ( 𝑗, 𝑦) = 𝛽 min
𝑖∈{𝑙 ∈𝐿 |𝑦𝑙=1}

distance( 𝑗, 𝑖;𝑇 )
diameter(𝑇 )

where 𝛽 is a tunable hyperparameter.

3.4.2 Evaluation Metrics. Let (𝑥,𝑦) denote a sample from the data
distribution D where 𝑥 ∈ R𝑑 represents an image and 𝑦 ∈ R𝐿 is
a one-hot binary vector of class ground-truths as described ear-
lier. Given a model that outputs class probabilities, we assume the
prediction to be positive for class j if the probability exceeds a
class-specific threshold 𝑇𝑗 .

We calculate per-class performance metrics. The overall perfor-
mance is reported as the average per-class performance. Hence, for
rest of the section, assume that we work with a binary classifier.
Given a test distribution (𝑥,𝑦) ∼ D and a model, we obtain the
presence of the class, denoted by binary variable 𝑦, by thresholding
the predicted probability with 𝑇 . We define precision and recall as:

Precision = E(𝑥,𝑦)∼D [𝑦 = 1|𝑦 = 1]
Recall = E(𝑥,𝑦)∼D [𝑦 = 1|𝑦 = 1]

The choice of the threshold𝑇 controls the precision-recall trade-
off and is typically selected based on practical requirements. A
higher threshold generally leads to higher precision and lower
recall, and a lower threshold leads to lower precision and higher
recall.

To gauge the general performance without committing to a
specific threshold, we use the Area Under Precision-Recall Curve
(AUPRC) to summarise the classification performance of a given
class. The precision-recall curve is traced by computing the (preci-
sion, recall) for different values of thresholds. The average AUPRC
over all classes or nodes in the tree to used summarise the overall
performance.

4 RESULTS
4.1 Qualitative Results
4.1.1 Breakdown of the Food Label Hierarchy.

Region: The dishes are primarily divided into North Indian and
South Indian cuisine, with 105 and 32 dishes, respectively. There
are also a small number of dishes that are pan-Indian or specific to
other regions of India.(See Figure 6 in Appendix)
Dietary restrictions: The dishes are also divided into vegetarian
and meat dishes, with 102 and 35 dishes, respectively. (See Figure 6
in Appendix)
Subcategories: The dishes are further divided into subcategories
at the third level of the hierarchy. For example, the North Indian
dish "Chicken Tikka Masala" is classified as a "Curry" dish, while



Figure 4: Images of chicken biryani from the IndiaFood26K

the South Indian dish "Idli" is classified as a "Dosa" dish due to the
ingredients used for both dishes. (see Figure 8 in Appendix)

4.1.2 Datacard. The IndiaFood26K dataset is a large-scale, multi-
label dataset of Indian food images. The pre-annotated dataset
contains 35,148 images across 137 data labels, and is 5-6 levels deep
in terms of label hierarchy. The dataset was created by collecting
non-sensitive static image data about food from a user-generated
database within Google Maps. Labels were derived from restaurant
menus. Refer to figure 3 for sample of the type of images within
our dataset.

The IndiaFood26K dataset is motivated by the need for a large-
scale Indian food classification dataset for computer vision projects.
The dataset is not publicly available due to the fact that it is user-
generated and we want to maintain user data privacy.

The IndiaFood26K dataset contains a number of biases, including:
• North Indian vs. South Indian bias: The separation of
North Indian and South Indian food was not done with culi-
nary expert feedback, and was reliant on 5 non-expert native
Indians who are from similar backgrounds. This could have
created a potential bias in annotation, which doesn’t encap-
sulate the perception of the Indian populace.

• Label hierarchy bias: The label hierarchy was not verified
and validated by experts, and we only consulted one expert.
This may have induced selection bias, where our hierarchy
would have catered to one perspective on Indian food. This
effect will affect the model’s semantic knowledge of Indian
food, and may have left out important classifications.

• Label selection bias: The process in which we refined the
labels from 235 to 137 labels could have resulted in a selection
bias. This is because the selection of which labels to keep or
throw out was done by a small group of people from the lab.
This could have resulted in a dataset that does not represent
the general perception of Indian food.

4.1.3 Data trends post-annotation. Annotatingmulti-image datasets
is challenging because it can be difficult to identify the exact fine-
grain label for a dish, especially if the image is blurry or if there are
text/watermarks obscuring the food. In our study, we found that the
most common reason for annotators to skip an image was that they

Table 1: Performance on IndiaFood26K test set

Method Backbone AUPRC
Food201[32] GoogleNet 0.264 ± 0.005
IFC[40] ResNet50 0.276 ± 0.002
SAM EffNetV2s 0.293 ± 0.009

were unable to identify the exact fine-grain label. Text/watermarks
obscuring the food in the image was a close second. This led to a
loss of 4-5k images per annotation round.

Of the 22k images that were labeled, annotator confidence and
completion of labeling was high. In the first round of annotations
(v1), 68% of images had all dishes labeled, 27% had over half labeled,
and 4% had less than half labeled. The second round of annotations
(v2) showed a similar trend. (see Figure 9 and 10 in Appendix)

The quality of images in the dataset was good, with annotators
rating them as good 99% of the time. Annotator confidence was also
high, with 93% of annotators rating their confidence as high.(see
Figure 11, 12, 13 and 14 in Appendix for more detailed distribution)

The results from the annotation process strongly support the
need for multi-label dataset as most Indian food images contain
more than one dish. In both rounds of annotations, around 30% of
images (7k images) received more than one label. This suggests
that Indian food images are often complex and can be difficult to
classify under a single label.

4.2 Indian dish classification model results
4.2.1 IndiaFood26K Train Test split. The dataset was preprocessed
to resize images and fix orientation before creating train-test splits.
Labels that had fewer than twenty examples were removed (8 out
of 137 labels). Examples that had no labels left after the previous
step were removed (43 out of 23918 examples). Starting with the
rarest label, a random example that contained the label was added
to the test set. Examples were sampled without replacement until
there were at least ten examples for that label. This processes is
iterated by moving on to the next rarest label with fewer than ten
labels and the process is repeated until every label had at least ten
examples in the test set. The remaining examples formed the train
dataset. At the end, there were 4775 test examples and 19100 train
examples. Figure 19 shows the final distribution of labels in the test
and train dataset.

Given our dataset is relatively small compared to the sizes re-
quired to train deep neural networks, we used pre-trained convolu-
tion neural network (CNN) backbone and fine-tuned on our target
dataset. Three popular pretrained backbones were used to fine-tune
the models for food classification: GoogleNet[1], ResNet[2] and
EfficientNetV2s[3]. For each of these CNN architecture, ImageNet-
pretrained weights were used and a linear layer of size 137 was
added at the top. We use the standard binary cross-entropy loss as
outlined in Section 3.4.1. We do a 80-20 train-validation split on
the aforementioned train dataset and perform a grid-search on the
hyperparameters based on the validation loss. More details on the
exact training and grid-search procedure can be found in Appendix.

Table 1 presents the models’ performance on IndiaFood26K test
set using only multi label annotation for training. Macro average



Table 2: Performance on Food201 test set

Method Backbone AUPRC
Food201 GoogleNet 0.489 ± 0.001
IFC ResNet50 0.519 ± 0.002
SAM EffNetV2s 0.543 ± 0.005

Table 3: Mean IoU between labels from annotation 1 and 2

Depth Leaf 4 3 2 1
IndiaTree 0.59 0.74 0.81 0.89 0.93

Randomized Leaves 0.59 0.62 0.66 0.79 0.90
Height Leaf 1 2 3 4

IndiaTree 0.59 0.76 0.81 0.87 0.92
Randomized Leaves 0.59 0.61 0.66 0.75 0.8

AUPRC is used to evaluate the model. Performance is not satis-
factory in all three methods. There is an increasing trend in per-
formance with more recent backbones. To gauge a better under-
standing of the relative performance, we train models on Food201.
Food201 is a multilabel dataset which is similar to our IndiaFood26K
dataset in characteristics. Table 2 presents the results on the offi-
cial Food201 test set. We note that the performance on Food201 is
higher than IndiaFood26K.

We hypothesise that the poor performance on IndiaFood26K
may be due to the intrinsic difficulty of classifying Indian food
at a fine-grained level. We qualitatively describe two cases below
highlighting the general difficulty in classifying the images:

• Many Indian dishes look visually similar but belong to differ-
ent classes of food. Figure 18 shows similar looking images
that were unanimously labelled differently.

• Many Indian dishes have large visual variations. Figure 17
shows images that look different but were unanimously la-
belled identically.

To verify the above hypothesis, second round of data annotation
was performed on the IndiaFood26K using the same annotation
protocol but with different annotators. Intersection over Union
(IoU) was used on the two label sets to measure the consistency
across annotations. Table 3 presents the results for IoU across the
two annotation rounds. The IoU is around 0.59 at leaf nodes which
indicate that human raters do not agree on the fine grained labels in
more that 40% of cases. However, we observe better agreements on
labels per image on common coarser grained labels. This motivates
incorporating hierarchy in our model to make better mistakes and
fail gracefully. Adding internal nodes may provide coarser labels
of the fine grained labels to be represented in the classification.
The hierarchy relations among these nodes also provides a way to
leverage sibling relationships or patterns while learning. To train
our hierarchical solution, we expanded the ground-truth set to
include the internal nodes of the hierarchy as described in Section
3.4.1. The table 4 shows the results on three methods with non-leaf
nodes on both IndiaFood26K and Food201 dataset.

We note the degradation in AUPRC after incorporating hierarchy.
This may simply be due to addition of extra labels. The addition of

hierarchy degrades performance of rare classes much more than
common classes as shown in Table 4. We hypothesize that this
may be due to classes recieving different effective weights; the
more common internal coarse-grained labels might aid in learning
representations of the children and thereby increase the effective
weight of the children.

CHAMP loss function described in the section x3.4.1 (methods) is
used to incorporate the hierarchical relation among the Indian food
dishes more effectively. CHAMP uses the hierarchy as tree structure
to compute the loss function. Table 5 shows the improvement in
classification performance of CHAMP loss function in comparison
to plain binary cross-entropy loss across all three backbones used in
the experiments. CHAMP owing to hierarchy-aware loss may make
better mistakes which is reflected in better performance of non-leaf
node classification in the tree structure. The CHAMP shows the
largest increase in performance relative to baseline loss function at
leaf level. This may be attributed to larger gain in performance of
nodes which have lesser training examples in the dataset leading
CHAMP to perform well at fine-grained classification. However,
the classification AUPRC attains good performance at higher lev-
els indicating practical utility of the method for coarse grained
classification.

The gain in CHAMP classification performance can be attributed
to the hierarchy tree and multi label annotation. We conduct abla-
tion experiments to show the value of the hierarchy tree construc-
tion on classification performance in table ??. We note considerable
degradation in the performance of internal nodes with the random
hierarchy, but with a marginal improvement in the performance at
leaf nodes. Random hierarchy at each level is created by randomly
shuffling the leaf nodes while keeping rest of the structure intact.
As seen, the structure of the hierarchy tree is an important design
aspect of the algorithm and needs to be constructed according to
use case.

4.3 Indian dish identification using
Multimodal Large Language model

Recent advances in Multimodal Large Language Models (MLLMs)
research is revolutionizing how we interact with technology. These
models extend beyond the conventional text-based interfaces, to
understand and generate content across a spectrum of formats in-
cluding text, images, audio, and video. Gemini 1.0 Pro[1] is one
of the popular MLLMs built on top of Transformer decoders [46]
that are enhanced with improvements in architecture and optimiza-
tion to enable training at scale as well as for efficient inference on
Google’s Tensor Processing Units.

Gemini was prompted with "classify the image with Indian
dishes. Label all if the image has multiple dishes. Output label dish
names only." to classify images form IndiaFood26K dataset. Both
fine grained and multi label classification capability were analysed
by comparing the output of Gemini model with annotator label. 6
shows the results summary for multilabel classification on test set
of IndiaFood26K consisting of 4780 images with 6850 human labels.
With just prompt engineering, MLLM models can identify India
dishes at coarse granularity. The models also do not identify all the
dishes present in the image. Further model finetuning is needed to



Table 4: Performance on Indian food classification using fine and coarse grained labels.

Method Backbone Micro AUPRC Macro AUPRC Micro Top 25 Micro Bottom 25
BCE (no internal) GoogleNet 0.358 ± 0.006 0.264 ± 0.005 0.433 0.091

Food201 GoogleNet 0.319 ± 0.011 0.221 ± 0.011 0.406 0.071
BCE (no internal) ResNet50 0.362 ± 0.002 0.276 ± 0.002 0.423 0.102

IFC ResNet50 0.351 ± 0.015 0.256 ± 0.011 0.426 0.088
BCE (no internal) EfficientNetV2S 0.391 ± 0.009 0.293 ± 0.009 0.466 0.108

SAM EfficientNetV2S 0.357 ± 0.06 0.256 ± 0.008 0.443 0.083

Table 5: Classification performance comparison ofCHAMPwithBCE loss formulti label classification of IndiaFood26Kdataset
across depths of the hierarchy.

Method Backbone AUPRC@leaf AUPRC@1 AUPRC@2 AUPRC@3 AUPRC@4 AUPRC@5
Food201 + ERM (with internal) GoogleNet 0.221 ± 0.011 0.867 ± 0.007 0.667 ± 0.01 0.497 ± 0.013 0.393 ± 0.017 0.194 ± 0.001

Food201 + CHAMP GoogleNet 0.253 ± 0.003 0.884 ± 0.004 0.71 ± 0.005 0.532 ± 0.006 0.422 ± 0.006 0.225 ± 0.003
ERM (with internal) ResNet50 0.256 ± 0.011 0.885 ± 0.005 0.697 ± 0.012 0.528 ± 0.015 0.422 ± 0.014 0.229 ± 0.011

CHAMP ResNet50 0.258 ± 0.011 0.889 ± 0.006 0.708 ± 0.013 0.531 ± 0.014 0.428 ± 0.016 0.23 ± 0.01
ERM (with internal) EffNetV2 0.256 ± 0.008 0.891 ± 0.003 0.717 ± 0.007 0.54 ± 0.005 0.431 ± 0.007 0.227 ± 0.008

CHAMP EffNetV2 0.269 ± 0.01 0.886 ± 0.007 0.714 ± 0.011 0.549 ± 0.013 0.442 ± 0.013 0.239 ± 0.009

Table 6: Performance of MLLM on IndiaFood26K

Evaluation Method Labels matched Coverage
Fine grained prediction 866 12%
Coarse grain prediction 3300 48%

No human label match images 2630 54%
Partial human label match images 2070 44%

Complete human label match images 80 2%

increase the accuracy of the Indian food classification on GenAI
tools.

4.4 Result summary
Summary of the experiments and ML model results are as follows

• Multi label classification of Indian food images have low
accuracy due to high variations in images as seenwith higher
inter grader variability among human annotators.

• Incorporating hierarchical relationships among Indian dishes
with CHAMP loss yields better classification accuracy for
both fine and coarse grained labels.

• Ablation experiments attribute the gain in classification per-
formance to the hierarchy tree information.

5 DISCUSSION
Wide-ranging geographical differences in Indian food, including
ingredients, cooking techniques, and presentation styles, make
complete picture classification extremely difficult. This intricacy is
emphasized by our dataset, which is generated from user-uploaded
photos of Indian restaurant meals on Google Maps. We do accept,
however, that the dataset may not be fully representative of the en-
tire range of Indian cuisine offers due to inherent biases in both dish

selection and visual depiction. In this work, we investigate the chal-
lenges associated with vision-based categorization in Indian food
and suggest possible ways forward. Large-scale, publicly-available
statistics are crucial for promoting research and innovation in the
Indian food and nutrition industry. Furthermore, considering the
variety of possible uses (such as nutrition analysis, recipe develop-
ment, and food discovery), equitable methods to dataset construc-
tion that prioritize fairness and representation are crucial. Adding
more information than just picture hierarchies and co-occurrence
patterns will greatly improve the categorization of Indian cuisine.
Research on nutrition and cooking might be revolutionized by
adding comprehensive metadata to datasets from professionals in
these domains. The additional visual variety seen in photos of home-
made Indian cuisine must also be expressly taken into consideration
by machine learning techniques. These photos frequently feature
overlapping parts, partly devoured portions, locally sourced food,
and muted hues. Widespread image-based meal recording in social
media and nutrition apps offers a great chance to address repre-
sentational and data volume issues. Lastly, while maintaining user
privacy, federated learning provides a way to improve food recogni-
tion algorithms. Our work on Indian food image classification is an
excellent example to look for more accurate classification models.
Addressing data bias, using multi-domain information, and using
machine learning techniques can advance the field.

6 CONCLUSION
In this work, we consider the problem of multi-label India food
classification.We created a newmulti-label annotated IndiaFood26K
dataset consisting of 139 Indian dishes. We improve the state of the
art classification performance by utilizing the relationship among
labels by creating the hierarchical tree by adding coarse grain dish
categories as parent nodes. Our CHAMP loss uses both multi-label
and hierarchy classification to improve both fine-grain and coarse
grain classification of Indian food images.
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A APPENDIX

Figure 5: High level food label distributions in hierarchy.

Figure 6: Fine-level Food Label Distributions in Hierarchy.



Figure 7: Fine-level Food Label Distributions in Hierarchy.

Figure 8: Fine-level Food Label Distributions in Hierarchy.



Figure 9: Fine-level Food Label Distributions in Hierarchy.

Figure 10: Fine-level Food Label Distributions in Hierarchy.



Figure 11: Fine-level Food Label Distributions in Hierarchy.

Figure 12: Fine-level Food Label Distributions in Hierarchy.



Figure 13: Fine-level Food Label Distributions in Hierarchy.

Figure 14: Fine-level Food Label Distributions in Hierarchy.



Figure 15: Annotator UI



Figure 16: Annotator UI Dropdown



Figure 17: Dishes of same kind (Biryani) has large visual variations among images.

Figure 18: Dishes look visually similar but belong to different classes like Biryani, Pulav, Fried rice.

Figure 19: Frequency of labels in the train and test datasets
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