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ABSTRACT
In the early stages of an infectious disease crisis, non-pharmaceutical
interventions (NPIs) such as quarantines and testing can play an
important role. Optimizing the delivery of NPIs is challenging as
they can impose substantial direct costs (e.g., test costs) and hu-
man impacts (e.g., quarantine of uninfected individuals) and can
be especially difficult to target for infections that may spread pre-
or asymptomatically. In addition, superspreading, a common char-
acteristic of many infectious diseases, induces informational de-
pendencies across a cluster (group of individuals exposed by the
same seed case). We formulate NPI optimization as a partially ob-
servable Markov decision process (POMDP), which we aim to solve
with reinforcement learning (RL). We find RL provides a promising
technical foundation that is difficult to achieve even with modern
methods. We propose a novel RL approach that leverages a super-
vised belief encoder as well as permutation invariant, fixed-size
observation representations. Through extensive experimentation
and evaluation, we show that our optimized policy can outper-
form all benchmarks by up to 27%. We also show that the policies
discovered by RL can be distilled into decision trees to simplify
deployment while still achieving strong performance. Additionally,
we explore the possibility of applying the Restless Multi-Armed
Bandit to our present setting, which introduces the coordination of
limited resources across clusters.

KEYWORDS
reinforcement learning, machine learning, contact tracing, public
health

1 INTRODUCTION
The COVID-19 pandemic has highlighted the crucial role of non-
pharmaceutical interventions (NPIs) in effectively managing the
spread of infectious diseases. Implementation of NPIs requires care-
ful consideration of multiple objectives, including prevention of
viral transmission and reduction of costs associated with quarantine
measures. Contact tracing has been widely adopted and extensively
studied in infectious disease crises, particularly in the context of
COVID-19 [13, 14, 19, 33].

Nevertheless, optimizing NPIs among clusters remains a compu-
tationally challenging problem in many settings. First, the action

space in each cluster is naturally combinatorially large because an
action must be selected for each contact. Second, the problem is in-
herently multi-objective as interventions have costs associated with
them. For example, sensing actions, such as testing, can provide
valuable information, but require resources to deploy, and quaran-
tining has human impacts. Additionally, with resource constraints,
it is hard to decide how many sensing actions should be allocated
to each cluster. Third, inferring the probability that an individual is
infectious can be difficult for infections that can be transmissible
without symptoms. Finally, the constraints of deployment make it
desirable that NPI policies can be executed without the need for
computation.
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Figure 1: We combine an infection probability encoder that
uses supervised learning with a reinforcement learning-
based policy.

In this work, we aim to develop a generic approach for cluster-
level optimization of NPIs based on reinforcement learning (RL) [32].
We find that modern RL approaches fail to outperform naive base-
lines such as quarantining all contacts or quarantining symptomatic
contacts. We augment RL in several ways. First, we observe that the
high-dimensional state and action spaces exhibit substantial per-
mutation equivariance. For example, the order of the contacts does
not matter—permuting the contacts and actions should produce the
same result. This observation and the combinatorial action space
motivate the development of an egocentric fixed-size state for each
contact. Second, we find that learning to predict the probability
of infectiousness via RL training is inefficient and that this quan-
tity has an important structural role in optimal policies in many
settings. Thus, we develop a supervised learning module for the



infectiousness inference task that leverages Convolutional Neural
Networks [9], viewing the cluster state as if it were an image.

We summarize our approach in Fig. 1. Our vision is that, in
an infectious disease crisis, an agent-based model simulating the
infection would be developed based on observations and expert
estimation (see, e.g., McAndrew et al. [21]). This model could be
used to evaluate and optimize policies, e.g., using the methods of
this paper, and could be refined using contact tracing data from the
field. We thus develop a minimally complex agent-based model for
SARS-CoV-2 using published research from the early stages of the
pandemic and use it as a testbed.

In the real world, resources such as tests are often constrained.
Initially, let’s assume a situation where the budget for testing is un-
limited, and each cluster functions independently. Under these con-
ditions, the proposed NPI optimization approach is effective across
multiple clusters without the need to consider testing limitations.
However, when we introduce a testing budget, it’s possible for one
cluster to deplete its entire test allocation to prevent transmission.
To address this, we form this problem as a Restless Multi-Armed
Bandit problem for allocating tests across the clusters. For cluster
level, the agent decides how many tests will be assigned to each
cluster.

This paper makes the following contributions:

• We propose a novel RL approach for finding optimal contact
tracing policies. Our approach combines RL with supervised
learning and a permutation invariant, egocentric, state rep-
resentation. The resulting agent can be trained and deployed
simultaneously across all cluster sizes.

• To motivate the use of a supervised belief state encoder, we
show the existence of a simple, yet optimal, threshold policy
for contact tracing in the setting where no sensing actions
are available.

• We develop a simple branching process-based model for
SARS-CoV-2 and compare our policies with baselines. We
show that we achieve better rewards across a range of ob-
jective parameters, even when distilled into decision trees
that can be widely distributed.

• We form the sensing action constraint problem as a Restless
multi-armed bandit problem and explore the possibility of
solving it.

Related work. We identify two main thrusts of work that opti-
mize contact tracing and NPIs: network and branching process. Net-
work models represent connections between individuals as edges
in a (possibly dynamic) contact graph [6, 16, 22, 26, 27]. These ap-
proaches can leverage network structure in their decisions, but
make the strong assumption that the entire contact network is
known at each time step. The closest existing approach to ours is
RLGN [22], which formulates the problem as a sequential decision-
making task within a temporal graph process. In contrast, we take
a cluster-based, tree-structured view of contagion [17, 23], but add
agent-based temporal elements. This approach has the advantage
of aligning more closely with the information available to deci-
sion makers in many practical settings and requires less detailed
information to construct.
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Figure 2: Cluster-based view of intervention planning.

2 PROBLEM DESCRIPTION
We aim to create NPIs that operate on the cluster level. Fig. 2 shows
a motivating example, taken from the cluster-level agent-based sim-
ulator we construct for SARS-CoV-2. A seed case exposes six contacts
on the same day. Contacts 1 and 4 eventually become infected and
show symptoms on day 2 and day 3, respectively. Contacts 2, 3,
5, and 6 never become infected. In this example, we must make a
binary action for each contact on each day: quarantine or not. The
goal of the NPI policy is to identify and quarantine (isolate) contacts
that are infected and not quarantine uninfected contacts, but the in-
fectious state is not directly observable. The optimal policy depends
on trade-offs between different objectives: failing to isolate infected
contacts, quarantining uninfected contacts, and direct policy costs
(e.g., of tests). Formally, we define the objective we aim to maximize
as:

(−𝑆1 − 𝛼2 × 𝑆2 − 𝛼3 × 𝑆3)/𝑁, (1)
where

• 𝑆1 is the count of transmission days where an infected indi-
vidual is not isolated,

• 𝑆2 is the count of days where a quarantined individual is not
infected, and 𝛼2 (which we assume is in [0, 1]) is the weight
for this term,

• 𝑆3 is the sum of the action costs (e.g., test cost) and 𝛼3 is the
weight for this term, and

• 𝑁 , which is the number of contacts, normalizing the objec-
tives to a score per contact.

In summary, the objective function seeks to minimize the number
of transmission days, minimize the number of days of non-effective
quarantine, and minimize the cost associated with actions. Intu-
itively, 1/𝛼2 is the number of quarantine days of an uninfectious
contact we are willing to accept in exchange for one additional day
of isolation of an infectious contact.

We remark that the objective value for any NPI policy can be
evaluated for a cluster as long as we have an “infection trajectory”
for each contact, a record of if and when they become infectious
and if and when they exhibit symptoms (which is needed if the
policy execution depends on symptom status). This is because these
infection timing events are unaffected by the NPI actions we con-
sider.

Formally, we define an infection trajectory for contact 𝑛 ∈ 𝑁

as the infectiousness state 𝑖
(𝑡 )
𝑛 ∈ 𝐼 ∈ {0, 1} and the symptom

observation 𝑜
(𝑡 )
𝑛 ∈ {0, 1}, the true infectiousness of contact and



Table 1: Parameters of the SARS-CoV-2 cluster infection trajectory generator and test action model.

Parameter Assumed value Details and references

Incubation time Log-normal: Log mean 1.57
days and log std 0.65 days Mean: 5.94 days. Bi et al. [1]

Duration of infectious period 7 days—2 days before and
5 days after onset if symptomatic Bi et al. [1]

Probability of infection 0.03 Perrault et al. [29]
Probability that an infected
individual shows symptoms 0.8 Buitrago-Garcia et al. [2]

Probability of symptoms
without infectiousness 0.01 per day Hinch et al. [10]

Probability of an asymptomatic infection 0.2 Buitrago-Garcia et al. [2]
Probability seed case is highly transmissive 0.109 Perrault et al. [29]

Infectiousness multiplier for
highly transmissive individuals 24.4 Perrault et al. [29]

Test parameters TP = 0.71, FN = 0.01
FP = 0.29, TN = 0.99 Caulley et al. [3]

Delays Time to begin tracing a seed case = 3 days
Test reporting delay = 1 day Assumed—realism.

Cluster Size Sample from uniform distribution on [2,40] Assumed—we would like to find policies
that perform well across cluster sizes.

observable symptom state, respectively, of contact 𝑛 on day 𝑡 , for
all 𝑡 ∈ [𝑇 ] (where [𝑇 ] = {1, 2, . . . ,𝑇 }). We assume that each of
these is binary for simplicity and that 𝑡 is measured in days, but
these are not requirements (e.g., 𝑖 (𝑡 )𝑛 could be a continuous viral
load and 𝑆1 could then represent risk-adjusted transmission days).
We define an cluster infection trajectory as an infection trajectory
for each contact in a cluster.

We require either a generator for cluster infection trajectories or
a large library of them that we can sample from during training. As
an example, we construct a generator for early SARS-CoV-2 using
the parameters and sources shown in Tab. 1 Trajectories run from
𝑡 = 1 to 𝑡 = 30, and 𝑡 = 3 is the first time actions are allowed to
be taken (modeling a contact tracing delay). Many of the required
components of such a generator are distributions that are often
estimated in the early stages of an outbreak. Components that are
not known can be filled in conservatively or as a belief distribution
(e.g., by aggregating expert opinion).

We allow for any set of NPI actions as long they can be simu-
lated on any infection trajectory and their impact on 𝑆1, 𝑆2 and
𝑆3 is defined. For example, a quarantine action, when applied to
contact 𝑛 on day 𝑡 , causes 𝑆1 to be not incremented if 𝑖 (𝑡 )𝑛 = 1, and
increments 𝑆2 if 𝑖

(𝑡 )
𝑛 = 0. A more complex quarantine action may

have a failure rate (an individual may not quarantine if directed),
incur an additional financial cost (which would be added to 𝑆3),
or may include a sensing component (see below). An action with
a sensing component reveals information about the contact’s in-
fectiousness state 𝑖 (𝑡 )𝑛 according to some distribution, e.g., a test
with a binary outcome according to the confusion matrix of test
parameters in Table 1. More complex actions can combine sensing
and quarantine, e.g., test and quarantine only if positive.

Our simulated environment has four actions: null action (𝑆3 cost
of 0, no effect), quarantine (𝑆3 cost of 0), test (𝑆3 cost of 1, draw
outcome according to Table 1), and test and quarantine only if
results are positive (draw outcome according to Table 1, 𝑆3 cost of
1).

3 APPROACH
The optimization problem from the previous section can be formu-
lated as a partially observable Markov decision process (POMDP).
However, solving this POMDP directly is intractable, even with
modern RL techniques. Some hope arrives from the result that,
under a simplified model that contains only quarantine actions, the
POMDP can be solved optimally if the probability that an individ-
ual is infectious can be estimated—but this is itself a challenging
problem due to the high dimensional observation space. Motivated
by this observation, we formulate our solution approach: we use a
Convolutional Neural Network (CNN) to estimate the probability of
infectiousness for each individual in a cluster, and this output, along
with an egocentric state representation for each contact, serves as
the state for the RL agent.

3.1 POMDP Formulation
We define a POMDP [11] as ⟨𝑆,𝐴, 𝑅, 𝑃,Ω,𝑂,𝛾, 𝑆0⟩, where 𝑆 and 𝐴
are the state and action spaces, respectively, 𝑅 : 𝑆 ×𝐴 → R is the
reward function, 𝑃 : 𝑆 ×𝐴 → Δ𝑆 is the transition function, Ω is the
observation state, 𝑂 : 𝑆 ×𝐴 → ΔΩ is the observation probabilities,
𝛾 ∈ [0, 1] is the discount factor, and 𝑆0 : Δ𝑆 is the distribution of
initial states.

We describe how to interpret the control problem of the previous
section as a POMDP. The cluster infection trajectory and the current
time 𝑡 are contained in the state. The only aspect of the state that
changes when an action is taken is the time 𝑡 . As this is a POMDP,
the state is not observable by the agent directly—instead, the agent
has to rely on action-dependent observations. The observation
emitted contains all of the information that is always available
regardless of action (the time 𝑡 , the symptom 𝑜

(𝑡 )
𝑛 for each contact).

Additionally, if an action with a sensing component is taken, it
contains the sensing return (e.g., positive or negative, PCR cycle
count). The action set is combinatorially structured—we select one
action for each contact in the cluster. If we have 𝑁 contacts, we
have an action space of size |𝐴𝑝 |𝑁 , where |𝐴𝑝 | is the number of



actions available for each contact. The reward can be calculated for
any policy from Obj. 1 for any cluster infection trajectory.

In principle, solving this POMDP results in the optimal control
policy. In practice, solving it exactly is not possible due to the high
computational complexity of the best-known algorithms. Peng et al.
[28] shows how to solve this POMDP with a belief state. They
show that, if the posterior probability of infection can be calculated
exactly (i.e., the probability of infection of each contact given all
observations so far), the optimal policy has a threshold-type form.
We utilize a supervised belief encoder to estimate the posterior
probability of infection.

3.2 Supervised Belief Encoder
Let 𝑜 [𝑡 ][𝑁 ] = {𝑜 (𝑡

′ )
𝑛 : 0 ≤ 𝑡 ′, 𝑛 ∈ [𝑁 ]} represent all symptom observa-

tions for a cluster up to day 𝑡 ; 𝑝 (𝑡 )𝑛 = 𝑃

(
𝑖
(𝑡 )
𝑛 = 1 | 𝑜 [𝑡 ][𝑁 ]

)
represent

the posterior probability that contact 𝑛 is infected given the symp-
tom observations so far.

The generator for the library of cluster infection trajectories
provides us with a large number of

(
𝑜
[𝑡 ]
[𝑁 ] , 𝑖

(𝑡 )
[𝑁 ]

)
pairs (where 𝑖 (𝑡 )[𝑁 ]

is the infectiousness state for all contacts in a cluster). A natural
question is whether we can produce useful estimates of 𝑝 (𝑡 )𝑛 from
𝑜
[𝑡 ]
[𝑁 ] using a supervised learning approach. While it is possible for

RL to produce strong policies without explicitly computing 𝑝 (𝑡 )𝑛 , it
is inefficiently positioned to do so because the information about
𝑖
(𝑡 )
𝑛 must be inferred from the reward signal.
A key question for applying supervised learning is how to rep-

resent the observation space 𝑜 [𝑡 ][𝑁 ] . We have two desiderata. First,
we would like the representation size to not vary with cluster size.
We can also achieve this property in the RL agent, resulting in
an agent that simultaneously be deployed across all cluster sizes,
which makes both training and deployment simpler. Second, there
is an advantage to using a representation that inherently accounts
for the permutation equivariance that arises due to the ordering
of individuals, i.e., if we permute the order of individuals in an
observation, our supervised learning model would ideally predict
𝑖
(𝑡 )
[𝑁 ] , but with the same permutation applied.
After testing several representations that satisfy these properties,

we arrive at the 9×𝑇 matrix shown in Fig. 3 (recall𝑇 is the trajectory
length). This is an egocentric representation of the observation—
it is from the perspective of a particular contact and contains all
information gathered so far. We train the supervised learning model
𝑓 to produce output of dimension [0, 1]𝑇 , i.e., given 𝑜 [𝑡 ][𝑁 ] for some

𝑡 ≤ 𝑇 , predict 𝑝 (𝑡
′ )

𝑛 for all 𝑡 ′ ∈ [𝑇 ].
We show that this representation can achieve an AUC of 0.95

for the SARS-CoV-2 cluster infection trajectory generator if an
appropriate architecture is selected. We experiment with a variety
of supervised learning model architectures in Tab. 2 and find that
Convolutional Neural Networks (CNNs) are generally the most
effective. In single-layer CNN architectures, we find that larger
2D convolutions tend to achieve higher AUC, and that a single
convolution layer followed by a linear layer performs just as well as

deeper architectures—this setup of a (5, 2) 2D convolution followed
by a linear layer is what we use in the experiments below.1
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Figure 3: The observation representation used for supervised
learning, shown on a cluster of size 10 after observing the
outcome of t=2.

Table 2: We find that two-layer architectures using a 2D
convolution followed by a linear layer achieves perfor-
mance(AUC score) on par with larger models.

Cluster size = 4 8 16 32

1 Layer

Conv1d (5,2) 0.798 0.807 0.823 0.830
Conv1d (5,3) 0.814 0.830 0.835 0.839
Conv2d (5,2) 0.800 0.814 0.827 0.830
Conv2d (5,3) 0.832 0.820 0.838 0.840
Conv2d (5,4) 0.858 0.849 0.843 0.859
Conv2d (5,5) 0.864 0.895 0.893 0.893

2 Layer

Conv1d (5,2) 0.824 0.830 0.833 0.840Conv1d (1,2)
Conv2d (5,3) 0.883 0.903 0.898 0.897Conv2d (1,3)
Conv2d( 5,2) 0.955 0.960 0.947 0.961Linear Layer
Conv2d (5,3) 0.951 0.960 0.940 0.964Linear Layer

3 Layer
Conv1d (5,3)

0.958 0.957 0.950 0.961Conv1d (1,3)
Linear Layer

4 Layer

Conv1d (4,3)

0.958 0.958 0.953 0.965Conv1d (2,3)
Conv1d (1,3)
Linear Layer

xgboost 0.763 0.732 0.804 0.770

3.3 Reinforcement Learning
To make RL effective, we will develop a compact state representa-
tion that includes supervised learning outputs. As with supervised
learning, we want the RL state representation to have the same
size for all clusters and to naturally encode permutation invariance.
1These experiments were performed on an earlier representation, which only had five
rows. In the following sections, we use (9, 2) 2D convolution followed by a linear layer.
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Figure 4: The supervised learning (CNN) output is used as
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In doing so, we can also reduce the action space size from com-
binatorial by factorizing across the contacts, i.e., training a single
policy which is applied separately to each contact—this is without
loss of performance in the setting without sensing actions if 𝑝 (𝑡 )𝑛 is
correct. The representation we use is a 8× 3 matrix shown in Fig. 4.
As with the supervised learning representation, it is egocentric and
time-specific.

The following training procedure for the RL policy and super-
vised belief encoder is used. First, a fixed but stochastic seed policy
generates 200 cluster infection trajectories and sensing actions,
which are used to train the supervised belief encoder. These trajec-
tories, along with the encoder outputs, are then used to train the
RL policy. If performance is sufficient, terminate. If it is not (which
happens when the current RL policy produces actions with a distri-
bution that is too different from the seed policy), use the current
RL policy to select sensing actions, continue training the encoder
using these new actions, and then retrain the RL policy with the
new supervised learning outputs. This process can be repeated any
number of times, or the RL policy and the encoder can be trained
in parallel.

For RL training, we use Proximal Policy Optimization (PPO) [31]
and Deep Q Learning (DQN) [24, 25]. The RL policy is a multi-
layer perceptron with two layers and 128 hidden units (a standard
architecture for PPO and DQN). In experiments, for each of six
different policy initializations (seed), train for 80000 environment
interactions, and pick the best based on 100 evaluation runs. All
training is performed on an Intel Xeon E5-2680 v4 with 28 cores
and 128 GB of RAM [5], and a single RL training run takes 3 hours
on average.

Note that the optimal RL policy depends on 𝛼2 and 𝛼3 and thus
a different policy must be trained for each different setting. How-
ever, the encoder depends on (𝛼2, 𝛼3) only indirectly due to the
sensing actions it sees in training. Thus, the same cluster infection
trajectories and encoder can be reused across multiple RL training
runs.

3.4 Restless Multi-Armed Bandit
Access to actions may be limited by available supply, i.e., not just
cost. Thus, it is desirable to develop methods that can allocate a
finite number of available resources across clusters. We provide
a preliminary exploration of how Restless Multi-Armed Bandits
(RMABs) [34] could be applied to this purpose.

RMABs define a sequential decision model where an agent aims
to maximize rewards over a large group of independent Markov
decision processes (MDPs) [30] with a shared budget. As true states
of arms are not directly observable, each arm is a POMDP and we
can rewrite it as a fully observable belief-state MDP [20], allowing
for a direct representation as an RMAB with multiple actions [15].
RMABs have gained wide interest over decades in the field of re-
source allocation tasks [8, 12], which naturally inspires us that
RMABs could be applied to allocate NPIs.

Each arm is a belief-state MDP and 𝑖th arm can be described as
a tuple

〈
𝑆 ′, 𝐴, 𝑅, 𝑃,𝛾, 𝑆 ′0

〉
:

• 𝑆 ′: state of the arm, which is a set containing all belief states
of individuals in the cluster.

• 𝐴: actions. It is the number of tests allocated to this arm. The
total number of tests among all arms is limited.

• 𝑅: reward function.
• 𝑃 : state transition function.
• 𝛾 : reward discount factor.
• 𝑆 ′0: the initial state of 𝑆 .

It is worth noting that these actions are applied to one arm on
the cluster level. Inside the cluster, RL could be applied to learn a
policy to maximize the total rewards under a certain budget.

Under a limited budget of total tests at time step 𝑡 , the agent
of RMAB is striving to maximize the sum of the following reward
function: (−𝑆1 − 𝛼2 × 𝑆2)/𝑁 , where 𝑆1 and 𝑆2 are the same in the
equation 1. Note that 𝛼3 × 𝑆3 is not involved here due to that the
total cost itself is a parameter in the RMAB problem. We use a
Lagrange relaxation approach to solve the RMAB, relaxing the
budget constraint and add a subsidy or penalty 𝜆 to the Bellman
objective function. Then, by decoupling the 𝜆 and the value function,
our final goal is to solve:

𝐽 (𝑠, 𝜆) = min
𝑉 𝑖 (𝑠𝑖 ,𝜆),𝜆

𝜆𝐵

1 − 𝛾
+
𝑁−1∑︁
𝑖=0

𝜇𝑖
(
𝑠𝑖
)
𝑉 𝑖

(
𝑠𝑖 , 𝜆

)
s.t. 𝑉 𝑖

(
𝑠𝑖 , 𝜆

)
≥ 𝑟 𝑖

(
𝑠𝑖
)
− 𝜆𝑐 𝑗 + 𝛾

∑︁
𝑠𝑖′

𝑇

(
𝑠𝑖 , 𝑎𝑖𝑗 , 𝑠

𝑖′
)
𝑉 𝑖

(
𝑠𝑖′, 𝜆

)
∀𝑖 ∈ {0, . . . , 𝑁 − 1}, ∀𝑠𝑖 ∈ S, ∀𝑎 𝑗 ∈ A, and 𝜆 ≥ 0

where 𝐵 is the action budgets at each time step, 𝛾 is the discount
factor, 𝑐 𝑗 is the action cost and 𝜇𝑖 (𝑠𝑖 ) = 1 if 𝑠𝑖 is the starting state of
arm 𝑖 and 0 otherwise. By leveraging the state-of-art LP solution, the
value function𝑉 (𝑠, 𝜆) is known, and then we compute action-value
function 𝑄 (𝑠, 𝑎, 𝜆𝑚𝑖𝑛). With the action-value function, a policy is
generated without effort.

4 EXPERIMENTS
We compare different control policies in our SARS-CoV-2 cluster
infection trajectory generator to evaluate our policy search proce-
dure.



Table 3: Obj. 1 multiplied by 100 (higher is better). RLSL finds the best policy in all settings except 𝛼2 = 0.05 and 𝛼3 = 0.2, where
RLSL, Threshold, Symptom-Based Quarantine and Always Quarantine are essentially tied—testing appears to provide no benefit
here. The largest gaps between RLSL and others occur when 𝛼2 is large and 𝛼3 is small.

𝛼2 = 0.05
𝛼3 = 0.01

𝛼2 = 0.05
𝛼3 = 0.1

𝛼2 = 0.05
𝛼3 = 0.2

𝛼2 = 0.1
𝛼3 = 0.01

𝛼2 = 0.1
𝛼3 = 0.1

𝛼2 = 0.1
𝛼3 = 0.2

𝛼2 = 0.2
𝛼3 = 0.01

𝛼2 = 0.2
𝛼3 = 0.1

𝛼2 = 0.2
𝛼3 = 0.2

RLSL −88.92 ± 1.68 −105.20 ± 1.03 −112.78 ± 2.23 −94.58 ± 2.34 −109.52 ± 2.54 −116.37 ± 3.17 −102.21 ± 2.39 −124.88 ± 2.82 −133.37 ± 3.35
Threshold −107.36 ± 7.67 −107.36 ± 7.67 −107.36 ± 7.67 −130.50 ± 4.76 −130.50 ± 4.76 −130.50 ± 4.76 −157.03 ± 4.37 −157.03 ± 4.37 −157.03 ± 4.37

Symptom-Based
Quarantine −113.58 ± 2.85 −113.58 ± 2.85 −113.58 ± 2.85 −134.32 ± 6.88 −134.32 ± 6.88 −134.32 ± 6.88 −158.42 ± 10.24 −158.42 ± 10.24 −158.42 ± 10.24

14-Day
Quarantine −141.50 ± 13.80 −141.50 ± 13.80 −141.50 ± 13.80 −175.50 ± 13.34 −175.50 ± 13.34 −175.50 ± 13.34 −276.50 ± 11.70 −276.50 ± 11.70 −276.50 ± 11.70

CDC 12/20 −203.67 ± 5.56 −213.40 ± 6.54 −228.80 ± 5.28 −235.37 ± 5.36 −246.30 ± 5.04 −277.23 ± 5.88 −310.77 ± 4.18 −330.67 ± 5.70 −344.10 ± 6.56
Always

Quarantine −110.50 ± 2.95 −110.50 ± 2.95 −110.50 ± 2.95 −215.44 ± 2.66 −215.44 ± 2.66 −215.44 ± 2.66 −425.91 ± 1.76 −425.91 ± 1.76 −425.91 ± 1.76

No Quarantine −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01 −249.33 ± 7.01

For 𝛼2, we use three values of 0.05, 0.1 and 0.2. For 𝛼3, we use
values of 0.01, 0.1, and 0.2.

Table 4: 𝑆1, 𝑆2 and 𝑆3 per contact across different cluster sizes
(lower is better and - indicates 0), where RLSL and Threshold
are set to 𝛼2 = 𝛼3 = 0.1. RLSL tests slightly more than CDC
12/20 (1.55 vs. 0.918 tests per contact) to dramatically decrease
𝑆1 and 𝑆2.

𝑆1 𝑆2 𝑆3

RLSL 0.459 ± 0.017 4.195 ± 0.148 1.553 ± 0.035
RLSL (𝑁 = 4) 0.391 ± 0.017 3.907 ± 0.013 1.430 ± 0.007
RLSL (𝑁 = 8) 0.419 ± 0.014 4.600 ± 0.032 1.689 ± 0.010
RLSL (𝑁 = 16) 0.524 ± 0.071 3.821 ± 0.049 2.017 ± 0.056
RLSL (𝑁 = 32) 0.541 ± 0.043 4.031 ± 0.029 2.043 ± 0.019
Threshold 1.198 ± 0.040 1.751 ± 0.013 -

Threshold (𝑁 = 4) 0.973 ± 0.059 1.976 ± 0.057 -
Threshold (𝑁 = 8) 1.009 ± 0.044 1.659 ± 0.036 -
Threshold (𝑁 = 16) 1.321 ± 0.048 1.617 ± 0.018 -
Threshold (𝑁 = 32) 1.438 ± 0.056 1.762 ± 0.028 -

Symptom-Based Quarantine 1.413 ± 0.036 0.228 ± 0.005 -
14-Day Quarantine 0.753 ± 0.007 10.274 ± 0.040 -

CDC 12/20 1.273 ± 0.068 7.334 ± 0.084 0.918 ± 0.004
Always Quarantine - 21.788 ± 0.085 -
No Quarantine 2.481 ± 0.046 - -

4.1 Comparison Policies
The policies introduced by this paper are:Threshold is the threshold-
type policy suggested in Sec. 3.1 (which does not use sensing ac-
tions); and RLSL, our primary contribution, combining RL with a
supervised belief encoder.

We compare several benchmark policies. Symptom-BasedQuar-
antine quarantines if an individual exhibits symptoms on the day
before the observed day and otherwise does not. 14-day Quar-
antine quarantines individuals from the initial day they exhibit
symptoms until either 14 days have passed or until they no longer
exhibit symptoms, whichever is later. CDC 12/20 is a complex
policy based on late 2020 (CDC) guidelines [4]. It quarantines symp-
tomatic contacts for 10 days. Asymptomatic contacts are tested on
day 5 and released on day 8 if the test is negative and they have

no symptoms. If the test is positive, they are quarantined for 14
days after the exposure. Always Quarantine always performs
the quarantine action. No Quarantine always performs the null
action.

Our experimental results report the average objective value and
standard error taken over 30 random clusters.

4.2 Analysis
We first show the performance among all policies in Tab. 3. We
find that RLSL is able to find the strongest policy in all settings
except 𝛼2 = 0.05 and 𝛼3 = 0.2, where RLSL, Threshold, Symptom-
Based Quarantine and Always Quarantine are all competitive (with
perhaps an edge to Threshold). Threshold is the second strongest
performer in all other settings. RLSL can achieve large improve-
ments over the benchmarks of up to 35%. We see improvements
across all settings, but they are largest when 𝛼2 is large and 𝛼3 is
small, i.e., where tests can be leveraged and the decision to quaran-
tine or not is challenging.

The best benchmark policy is Symptom-Based Quarantine ex-
cept when 𝛼2 = 0.05, where Always Quarantine is slightly bet-
ter. Symptom-Based Quarantine is often competitive with Thresh-
old, despite the presence of extensive asymptomatic and presymp-
tomatic transmission, as well as symptoms without infection, in
the generator.

We report objective values broken out by component and by
cluster size as measured per contact, where 𝛼2 = 𝛼3 = 0.1 is used
to train RLSL and set the parameters (Tab. 4). Here we can intu-
itively grasp the effects of the different policies. 14-Day Quarantine,
CDC 12/20, and Always Quarantine quarantine widely, resulting
in 𝑆2 ≈ 10.3, 7.3, 21.8 days of quarantine without infection per
contact (respectively) and achieving 𝑆1 ≈ 0.75, 1.27, 0.0 as a result.
Symptom-based quarantine takes a different approach, preventing
only 57% of transmission days, but incurring minimal costs to do
so. RLSL uses about 50% more tests than CDC 12/20, but reduces 𝑆1
to about 40% lower than 14-day quarantine with 60% less 𝑆2 cost.
Threshold is simply more efficient than non-testing competitors
at the trade-off between 𝑆1 and 𝑆2 by allowing 𝑆1 to be larger to
vastly reduce 𝑆2.

In an ablation study (Tab. 5), we gain a more detailed view into
the operation of the RLSL policy. We see that the introduction of
the SL outputs to the RL state results in vastly improved perfor-
mance in all tested scenarios compared to RL Only, which uses the



Table 5: RLSL (PPO) and Threshold always achieve dramatically higher objective values than RL Only, which has no supervised
learning component. For 𝛼2 = 0.05 and 𝛼3 ∈ {0.1, 0.2}, RLSL with no sensing action scores slightly better than standard RLSL. In
many settings, we are able to find decision tree policies that perform similarly to the RLSL or Threshold policies, which are
much more complex.

𝛼2 = 0.05
𝛼3 = 0.01

𝛼2 = 0.05
𝛼3 = 0.1

𝛼2 = 0.05
𝛼3 = 0.2

𝛼2 = 0.1
𝛼3 = 0.01

𝛼2 = 0.1
𝛼3 = 0.1

𝛼2 = 0.1
𝛼3 = 0.2

𝛼2 = 0.2
𝛼3 = 0.01

𝛼2 = 0.2
𝛼3 = 0.1

𝛼2 = 0.2
𝛼3 = 0.2

RLSL −88.92 ± 1.68 −105.20 ± 1.03 −112.78 ± 2.23 −94.58 ± 2.34 −109.52 ± 2.54 −116.37 ± 3.17 −102.21 ± 2.39 −124.88 ± 2.82 −133.37 ± 3.35

RLSL (always test) −94.47 ± 0.97 −291.50 ± 3.97 −518.10 ± 3.38 −96.48 ± 3.14 −292.30 ± 2.86 −531.90 ± 4.48 −107.90 ± 4.23 −320.80 ± 4.70 −531.50 ± 3.97
RLSL (never test) −98.67 ± 2.33 −98.67 ± 2.33 −98.67 ± 2.33 −128.25 ± 2.50 −128.25 ± 2.50 −128.25 ± 2.50 −148.41 ± 6.44 −148.41 ± 6.44 −148.41 ± 6.44

RL Only −150.50 ± 5.19 −211.80 ± 7.81 −228.40 ± 6.84 −178.90 ± 7.63 −244.80 ± 8.06 −320.90 ± 9.70 −202.90 ± 13.32 −294.20 ± 13.34 −333.20 ± 7.55
Threshold −107.36 ± 7.67 −107.36 ± 7.67 −107.36 ± 7.67 −130.50 ± 4.76 −130.50 ± 4.76 −130.50 ± 4.76 −157.03 ± 4.37 −157.03 ± 4.37 −157.03 ± 4.37

Decision Tree −103.15 ± 4.20 −104.96 ± 3.12 −97.46 ± 3.66 −91.10 ± 1.30 −121.90 ± 2.66 −143.25 ± 3.80 −127.43 ± 2.52 −131.53 ± 2.89 −161.23 ± 3.03

Table 6: With DQN setting, standard RLSL always works better than RLSL with no sensing action and with always sensing
action, except for 𝛼2 = 0.05 and 𝛼3 ∈ 0.2

.
𝛼2 = 0.05
𝛼3 = 0.01

𝛼2 = 0.05
𝛼3 = 0.1

𝛼2 = 0.05
𝛼3 = 0.2

𝛼2 = 0.1
𝛼3 = 0.01

𝛼2 = 0.1
𝛼3 = 0.1

𝛼2 = 0.1
𝛼3 = 0.2

𝛼2 = 0.2
𝛼3 = 0.01

𝛼2 = 0.2
𝛼3 = 0.1

𝛼2 = 0.2
𝛼3 = 0.2

RLSL −47.57 ± 1.2 −69.66 ± 1.77 −91.25 ± 1.33 −63.81 ± 1.03 −77.06 ± 1.42 −101.03 ± 1.13 −89.49 ± 2.69 −100.61 ± 2.45 −116.54 ± 3.07

RLSL (always test) −56.98 ± 2.08 −268.08 ± 2.78 −487.88 ± 1.79 −65.04 ± 2.03 −277.02 ± 2.54 −508.18 ± 2.39 −85.87 ± 1.33 −284.95 ± 3.66 −511.73 ± 3.07
RLSL (never test) −90.36 ± 1.37 −90.36 ± 1.37 −90.36 ± 1.37 −115.66 ± 1.29 −115.66 ± 1.29 −115.66 ± 1.29 −133.47 ± 1.57 −133.47 ± 1.57 −133.47 ± 1.57

Table 7: The generalized RLSL works not as well as the standard RLSL.

𝛼3 = 0.01 𝛼3 = 0.03 𝛼3 = 0.05 𝛼3 = 0.07 𝛼3 = 0.1 𝛼3 = 0.15 𝛼3 = 0.02
RLSL(generalised) −99.31 ± 4.77 −111.16 ± 5.58 −118.80 ± 4.22 −126.77 ± 4.85 −135.16 ± 4.80 −137.42 ± 4.80 −138.51 ± 6.67
RLSL(fixed 𝛼3) −63.81 ± 1.03 −67.08 ± 1.58 −71.98 ± 1.77 −75.04 ± 2.03 −77.06 ± 1.42 −88.48 ± 2.09 −101.03 ± 1.13

state representation of Fig. 4 without the first two rows. RL Only
performs worse than Symptom-Based Quarantine in all settings.
RLSL (never test) and the decision tree policy (described below)
sometimes outperform RLSL, indicating that the training procedure
could still be improved.

We also use DQN for RLSL training. Compared to the results
presented in Tab. 5 and Tab. 6, DQN outperformed PPO across all
versions of RLSL. Similarly, as shown in Table 6, standard RLSL
outperforms both the "always test" and "never test" strategies, with
the exception of settings where 𝛼2 = 0.05 and 𝛼3 = 0.2.

Interpretable Policy. In contrast to the benchmarks, both RLSL
and Threshold require neural network outputs, i.e., computation,
to run. We experiment with a procedure to convert RLSL’s policy
into a decision tree that can be distributed on paper. We use nine
interpretable features: days since exposure, days since positive test,
days since symptom, yesterday’s test result (0 if no test), whether
tested yesterday, the number of symptomatic contacts in the cluster
today, the number of positive tests in the cluster so far normalized
by cluster size, and the cluster size. Using these features, we train
a decision tree to predict RLSL’s action. We consider five types
of actions: (1) quarantine and no test, (2) quarantine and test, (3)
no quarantine and test, (4) no quarantine and no test, (5) test and,
if positive, quarantine; otherwise, no quarantine. The results are
shown in the last row of Table 5. In three cases, the decision tree
policy is at least as strong as the policy produced by RLSL. We
believe that these policies can be further improved (see Discussion).

4.3 Sensing Action Constraints
In this section, we will show the experiment we did to explore the
possibility of solving the limited sensing action problems.

We assume that we have a test budget and we need to allocate all
tests to different clusters. From the reward function, we can know
that when 𝛼3 is larger, the agent is more inclined to choose actions
0 and 1 that are not tested. Based on this, we can find a specific 𝛼3
that makes the total number of tests for all clusters meet the test
budget.

Thus, we train a new generalized model with various 𝛼3 and with
fixed 𝛼2 = 0.1. This is a single-cluster version. It takes the original
observation + 𝛼3 as the input and the 𝛼3 is sampled from a uniform
distribution over [0.01, 0.3]. We compared the performance of the
generalized RLSL with the original one Tab. 7. Note that we train
generalized RLSL with different 𝛼3 and evaluate it with specific 𝛼3.

Additionally, we show the relationship between 𝛼3 and the av-
erage daily test number in two clusters (cluster size = 20, 30) in
Figure 5. Indeed, the amount of tests consumed decreases when 𝛼3
is larger.

5 DISCUSSION AND CONCLUSION
This work aims to develop a generic multi-objective optimization
approach for cluster-level optimization of NPIs. We formulate this
problem as a POMDP that we solve with RL, leveraging a supervised
belief encoder, a permutation equivariant state representation, and
a factorized action space. We demonstrate the potential of our
approach—in a simple agent-based model of SARS-CoV-2, we can
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Figure 5: The number of average daily tests gets lower when
𝛼3 is larger.

achieve substantially higher objective values than baseline policies.
Our optimized policy can outperform all benchmarks by up to 27%.
Moreover, the developed policies exhibit applicability across various
cluster sizes and can be trained on consumer hardware, the fact that
these policies can be implemented on consumer-grade hardware
enhances their practicality and scalability, making them accessible
for broader real-world application. In addition, our approach has
shown promise in formulating strong and interpretable policies
across multiple settings. This aspect is particularly important as
it contributes to the transparency and understandability of the
policies, which are crucial factors in public health interventions.

Our agent-based model represents a classic probabilistic frame-
work for simulating disease dynamics, which can be applied to
other epidemics. It is built using key disease parameters derived
from various sources during a crisis, incorporating the inherent
uncertainties in these estimates. In the early stages of a crisis, we
emphasize the importance of focusing on superspreading dynamics,
given their significant impact on the effectiveness of interventions,
as demonstrated in our findings. Utilizing this model, we can cre-
ate an environment based on a branching process, which is then
optimized using the approach outlined in this paper.

Our approach combines RL and SL techniques. RL is a powerful
optimization technique, but it has some drawbacks. One significant
limitation is its inherent difficulty in exploiting problem structure.
In this setting, the underlying POMDP has a substantial structure in
the belief state that can be exploited to greatly simplify the learning
task. We extract this information using a combination of manual
insight and brute-force supervised learning. It is an open question
as to whether RL techniques can learn to discover such structures
through experimentation. Another challenge with RL is its well-
known instability during the training phase [7]. We attempt to
reduce this instability by using multiple initializations, but we still
see evidence of it in the 𝛼2 = 0.05, 𝛼 ≥ 0.1 settings, where reducing
the action space produces higher objective values. Despite these
challenges, we believe the advantages of using RL, especially in
terms of its capability to provide high-quality solutions for complex
optimization problems, outweigh its limitations.

While no existing work uses the same modeling framework or
policy search space as ours, in some cases, we can compare our
results. The model of Perrault et al. [29] is most similar to ours,
and the risk-based quarantine (RBQ) policies they evaluate can be
compared to Threshold and RLSL, but due to different assumptions,
the amount of reduction in transmission they achieve relative to the
status quo is much less. This is because they assume that individuals
self-isolate even in the absence of an intervention and that some
individuals drop out of quarantine. Threshold can be viewed as
a policy that generalizes the RBQ approach they suggest, in that
Threshold generates an infinite family of optimal risk-based families
for different risk tolerance levels. However, Threshold’s policies
are less interpretable than RBQ.

Kucharski et al. [18] provides another point to compare the effec-
tiveness of contact tracing. In their setting, combining self-isolation,
household quarantine, and comprehensive manual contact tracing
of all contacts resulted in a 64% reduction in disease transmission,
which is equivalent to 𝑆1. In our setting, we find a reduction of
69.95% for two-week quarantine, suggesting that interventions have
a comparable impact in our (much simpler) model for COVID-19
transmission.

Our current work focuses on developing an effective policy for
the coordination of a limited number of tests across clusters. We
utilize the Restless Multi-Armed Bandit. For each time T, there is
a test budget, and each arm allocates the test to each cluster. Our
model can be viewed as having two levels of agents. For cluster
level, the agent needs to determine how many tests are required
for each cluster each day. For the individual level, all settings are
the same as the current one. From our results so far, we know
that different 𝛼3 will cause each individual agent to make different
choices. Therefore, 𝛼3 can be grid searched, and if the total number
of tests per cluster under the current 𝛼3 exceeds the test budget, 𝛼3
is increased, and if not, 𝛼3 is reduced.

While our research provides valuable insights into the applica-
tion of RMABs, there are several avenues for future exploration
and improvement. One challenge would be how to train a gener-
alized multi-cluster multi-agent model with 𝛼3. Our preliminary
results indicate that this generalized model has some promising
characteristics, but we have not yet tested it in resource allocation
experiments.
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