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ABSTRACT
Restless multi-arm bandits (RMABs) is a class of resource allocation

problems with broad application in areas such as healthcare, on-

line advertising, and anti-poaching. We explore several important

question such as how to handle arms opting-in and opting-out over

time without frequent retraining from scratch, how to deal with

continuous state settings with nonlinear reward functions, which

appear naturally in practical contexts. We address these questions

by developing a pre-trained model (PreFeRMAB) based on a novel

combination of three key ideas: (i) to enable fast generalization, we

use train agents to learn from each other’s experience; (ii) to accom-

modate streaming RMABs, we derive a new update rule for a crucial

𝜆-network; (iii) to handle more complex continuous state settings,

we design the algorithm to automatically define an abstract state

based on raw observation and reward data. PreFeRMAB allows

general zero-shot ability on previously unseen RMABs, and can

be fine-tuned on specific instances in a more sample-efficient way

than retraining from scratch. We theoretically prove the benefits of

multi-arm generalization and empirically demonstrate the advan-

tages of our approach on several challenging, real-world inspired

problems.
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Restless multi-arm bandits (RMABs), a class of resource alloca-

tion problems involving multiple agents with a global resource

constraint, have recently been studied from a multi-agent rein-

forcement learning perspective. This has found applications in

various scenarios, including resource allocation in multi-channel

∗
Equal Contribution.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative

Commons Attribution 4.0 International (CC-BY 4.0) licence.

communication,machinemaintenance, and healthcare [9, 24, 31, 38–

40, 47, 50, 57, 67, 71].

The usual RMAB setting considers a fixed number of arms, each

associated with a known, fixed MDP with finite state and action

spaces; the RMAB chooses 𝐾 of 𝑁 arms every round to optimize

some long term objective. Even in this setting, the problem has been

shown to be PSPACE hard [46]. Several approximation algorithms

have been proposed in this setting [23, 62], particularly when MDP
transition probabilities are fully specified, which are successful in

practice. State-of-the-art approaches for binary action RMABs com-

monly provide policies based on theWhittle index [62], an approach

that has also been generalized tomulti-action RMABs[23, 29]. There

are also linear programming-based approaches to both binary and
multi-action RMABs [21, 68–70]. Reinforcement learning (RL) based

techniques have also been proposed as state-of-the-art solutions

for general multi-action RMABs [30].
In this work, we focus on RL-based methods that provide general

solutions to binary and multi-action RMABs, without requiring

ground truth transition dynamics, or special properties such as

indexability as required by other approaches [37, 60]. Unfortunately,

several limitations exist in current RMAB solutions, especially for

state of the art RL-based solutions, making them challenging or

inefficient to deploy in real-world resource allocation problems.

The first limitation arises when dealing with arms that con-

stantly opt-in (also known as streaming RMABs [37]). Existing

solutions either require ground truth transition probabilities [37],

which are often unknown in practice, or else require an entirely

newmodel to be trained repeatedly, which can be extremely compu-

tationally costly and sample inefficient. For instance, public health

programs may model patient intervention deployment as an RMAB

problem[13, 16, 35, 43, 44, 58], where new patients (arms in RMABs)

arrive asynchronously during intervention deployment[37]. Fre-

quently training models from scratch to account for new patients

with unknown transition dynamics may be infeasible, or prohib-

itively expensive over long time periods, particularly for public

health programs that operate with limited resources.

A second limitation occurs for new programs, or existing pro-

grams experiencing a slight change in the user base. In these situa-

tions, existing approaches do not provide a pretrained RMABmodel

that can be immediately deployed. In deep learning, pretrained mod-

els are the foundation for contemporary, large-scale image and text

networks that generalize well across a variety of tasks [11]. For



real-world problems modeled with RMABs, establishing a similar

pretrained model is essential to reduce the burden of training new

RMAB policies from scratch, as well as for transferring knowledge

across domains when data is scarce.

The third limitation occurs in handling continuous state multi-
action RMABs. Continuous state restless bandits have several im-

portant applications [18, 32, 54]. However, in field studies, naturally

continuous domain state-spaces, such as patient adherence, are

often binned into manually crafted discrete state spaces to improve

model tractability and scalability [39]. In this process, we may lose

crucial information about raw observations, and spend substantial

time crafting these discrete state spaces manually.

In this workwe present PreFeRMAB, aPretrained Flexiblemodel

for RMABs. Using multi-arm generalization, PreFeRMAB enables

zero-shot deployment for unseen arms as well as rapid fine-tuning

for specific RMAB settings. Our main contributions are:

• To the best of our knowledge, we are the first to develop a

pretrained RMAB model with zero shot ability on entire sets

of unseen arms.

• Whereas a general multiagent RL system could suffer from

sample complexity exponential in the number of agents 𝑁

[20], we prove PreFeRMAB benefits from larger 𝑁 , via multi-

arm generalization and better estimation of the population

distribution of arm features.

• Our pretrained model can be fine-tuned on specific instances

in a more sample-efficient way than training from scratch,

requiring less than 12.5% of samples needed for training a

previous multi-action RMAB model in a healthcare setting

[58].

• We derive an update rule for a crucial 𝜆-network, allowing

changing numbers of arms without retraining. While stream-

ing bandits received considerable attention [33], we are the

first to handle streamingmulti-action RMABs with unknown

transition dynamics.

• Our model accommodates both discrete and continuous

states. To address the continuous state setting, where real-

world problems often require nonlinear rewards [49], we

providing a StateShaping module to automatically define an

abstract state.

1 RELATEDWORK
RMABs with binary and multiple actions. Solving an RMAB

problem, even with known transition dynamics, is known to be

PSPACE hard [46]. For binary action RMABs, Whittle [62] pro-

vides an approximate solution, using a Lagrangian relaxation to

decouple arms and choose actions by computing so-called Whit-

tle indices of each arm. It has been shown that the Whittle index

policy is asymptotically optimal under the indexability condition

[4, 61]. The Whittle index was extended to a special class of multi-
action RMABs with monotonic structure [22, 24]. A method for

more general multi-action RMABs based on Lagrangian relaxation

was proposed by Killian et al. [29]. Weakly coupled Markov Deci-

sions Processes (WCMDP), which generalizes multi-action RMABs

to have multiple constraints, was studied by Hawkins [23], who

proposed a Langrangian decomposition approach. WCMDP was

subsequently studied by Adelman andMersereau [2], who proposed

improvements in solution quality at the expense of higher computa-

tional costs. While above methods developed for WCMDP require

knowledge of ground truth transition dynamics, our algorithm

handles unknown transition dynamics, which is more common in

practice[60]. Additionally, the above works in multi-action settings

do not provide algorithms for continuous state RMABs.

Multi-agent RL and RL for RMABs. RMABs are a specific

instance of the powerful multi-agent RL framework used to model

systems with multiple interacting agents in both competitive and

co-operative settings [34, 53], for which significant strides have

been made empirically [25, 65] and theoretically[26, 63]. Nakhleh

et al. [42] proposed a deep RL method to estimate the Whittle index.

Fu et al. [19] provided an algorithm to learn a Q-function based on

Whittle indices, states, and actions. Avrachenkov and Borkar [8]

and Biswas et al. [10] developed Whittle index-based Q-learning

methods with convergence guarantees. While the aforementioned

works focus on binary action RMABs, Killian et al. [28] generalized

this to multi-action RMABs using tabular Q-learning. A subsequent

work [30], which focussed on robustness against adversarial distri-

butions, took a deep RL approach that was more scalable. However,

existing works on multi-action RMABs do not consider streaming

RMABs and require training from scratch when a new arm opts-in.

Additionally, works built on tabular Q-learning [8, 10, 19, 28] may

not generalize to continuous state RMABs without significant mod-

ifications. Our pretrained model addresses these limitations, and

enables zero-shot ability on a wide range of unseen RMABs.

Streaming algorithms. The streaming model, pioneered by

Alon et al. [5], considers a scenario where data arrives online and

the amount of memory is limited. The model is adapted to multi-

arm bandits (MAB), assuming that arms arrive in a stream and the

number of arms that can be stored is limited [3, 6, 7, 14, 27, 33, 36].

The streaming model has recently been adapted to binary action
RMABs with known transition probabilities[37], but not studied in

the more general and practical settings ofmulti-action RMABs with

unknown transition dynamics. We aim to close this gap.

Zero-shot generalization and fine-tuning. Foundation mod-

els that have a strong ability to generalize to new tasks in zero shot

and efficiently adapt to new tasks via fine-tuning have received

great research attention [11]. Such models are typically trained on

vast data, such as internet-scale text [12, 17] or images [48, 51]. RL

has seen success in the direction of foundation models for decision

making, using simulated [55, 56] and real-world [66] environments.

To our knowledge, we are the first to realize zero-shot generaliza-

tion and efficient fine-tuning in the setting of RMABs.

2 PROBLEM STATEMENT
We study multi-action RMABs with system capacity 𝑁 , where

existing arms have the option to opt-out (that is, the state-action-

rewards corresponding to them are disregarded by the model post

opt-out), and new, unseen arms can request to opt-in (that is, these

arms are considered only post the opt-in time). Such requests will

be accepted if and only if the system capacity permits. A vector

𝜉𝑡 ∈ {0, 1}𝑁 represents the opt-in decisions:



𝜉𝑖,𝑡 =

{
1 if arm 𝑖 opts-in at round 𝑡 ,

0 otherwise.

Notice that existing arms must opt-in in each round 𝑡 to remain

in the system. For each arm 𝑖 ∈ [𝑁 ], the state space S𝑖 can be

either discrete or continuous, and the action space A𝑖 is a finite

set of discrete actions. Each action 𝑎 ∈ A𝑖 has an associated cost

C𝑖 (𝑎), with C𝑖 (0) denoting a no-cost passive action. The reward

at a state is given by a function 𝑅𝑖 : S𝑖 → R. We let 𝛽 ∈ [0, 1)
denote a discount factor. Each arm has a unique feature vector

𝒛𝑖 ∈ R𝑚 that provides useful information about the arm. Notice our

model directly utilizes feature information in its policy network,

without requiring intermediate steps to extract transition dynamics

information from features.

When the state space is discrete, each arm 𝑖 ∈ [𝑁 ] follows a
Markov Decision Process (S𝑖 ,A𝑖 , C𝑖 ,𝑇𝑖 , 𝑅𝑖 , 𝛽, 𝒛𝑖 ), where 𝑇𝑖 : S𝑖 ×
A𝑖 ×S𝑖 → [0, 1] is a transition matrix representing the probability

of transitioning from the current state to the next state given an

action. In contrast, when the state space is continuous, each arm

𝑖 ∈ [𝑁 ] follows a Markov Decision Process (S𝑖 ,A𝑖 , C𝑖 , 𝚪𝑖 , 𝑅𝑖 , 𝛽, 𝒛𝑖 ),
where 𝚪𝑖 is a set of parameters encoding the transition dynamics.

For example, in the case that the next state moves according to a

Gaussian distribution, 𝚪𝑖 may denote the mean and variance of the

Gaussian.

For simplicity, we assume that S𝑖 ,A𝑖 , C𝑖 , and 𝑅𝑖 are the same for

all arms 𝑖 ∈ [𝑁 ] and omit the subscript 𝑖 . Note that our algorithms

can also be used in the general case where rewards and action

costs are different across arms. For ease of notation, we let 𝒔 ∈ R𝑁
denote the state over all arms, and we let 𝑨 ∈ {0, 1}𝑁×|A| denote
one-hot-encoding of the actions taken over all arms. The agent

learns a policy 𝜋 that maps states 𝒔 and features 𝒛 to actions 𝑨,
while satisfying a constraint that the sum cost of actions taken is

no greater than a given budget 𝐵 in every timestep 𝑡 ∈ [𝐻 ], where
𝐻 is the length of the horizon.

Our goal is to learn an RMAB policy that maximizes the
following Bellman equation The key difficulty in learning such

a policy is how to utilize features 𝒛 and address opt-in decisions 𝝃 .
These are important research questions not addressed in previous

works [30].

𝐽 (𝒔, 𝒛, 𝝃 ) = max

𝑨

{
𝑁∑︁
𝑖=1

𝑅 (𝒔𝑖 ) + 𝛽 E
[
𝐽
(
𝒔′, 𝒛, 𝝃

)
| 𝒔,𝑨

]}
, (1)

s.t.

𝑁∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑨𝑖 𝑗𝑐 𝑗 ≤ 𝐵 and

|A |∑︁
𝑗=1

𝑨𝑖 𝑗 = 1 ∀𝑖 ∈ [𝑁 ] ,

where 𝑐 𝑗 ∈ C is the cost of 𝑗 th action, and 𝐴𝑖 𝑗 = 1 if action 𝑗 is

chosen on arm 𝑖 and 𝐴𝑖 𝑗 = 0 otherwise. Further, we assume that

the rewards 𝑅 are uniformly bounded by 𝑅max.

3 GENERALIZED MODEL FOR RMABS
We first provide an overview of key ideas and then discuss each of

the ideas in more detail.

3.1 Key Algorithmic Ideas
Several key algorithmic novelties are necessary for our model to

address limitations of existing works:

A pretrained model via multi-arm generalization: We train

agents to learn from each others’ experience. Whereas a general

multiagent RL system could suffer from sample complexity expo-

nential in the number of arms𝑁 [20], we prove PreFeRMAB benefits

from a larger 𝑁 , via generalization across arms.

A novel 𝜆-network updating rule for opt-in: The opt-in and

opt-out of arms induce a more complex form of the Lagrangian

and add randomness to actions taken by agents. We provide a new

𝜆-network update rule and train PreFeRMAB with opt-in and opt-

out of arms, to enable zero-shot performance across various opt-in

rates and accommodate streaming RMABs.

Handling continuous states with StateShaping subroutine:
In the continuous state setting, real-world problems often require

nonlinear rewards [49], and naively using raw observations to train

models may result in poor performance (see Table 5). To tackle

this challenge, we design the algorithm to automatically define an

abstract state based on raw observation and reward data.

3.2 A Pretrained Model via Multi-arm
Generalization

To enable multi-arm generalization, we introduce feature-based

Q-values, together with a Lagrangian relaxation with features 𝒛𝑖
and opt-in decisions 𝜉𝑖 :

𝐽
(
𝑠, 𝒛, 𝝃 , 𝜆★

)
= min

𝜆≥0

(
𝜆𝐵

1 − 𝛽 +
𝑁∑︁
𝑖=1

max

𝑎𝑖 ∈ |A |
{𝑄 (𝒔𝑖 , 𝑎𝑖 , 𝒛𝑖 , 𝜉𝑖 , 𝜆)}

)
, (2)

s.t. 𝑄 (𝒔𝑖 , 𝑎𝑖 , 𝒛𝑖 , 𝜉𝑖 , 𝜆)
= 𝜉𝑖𝑅 (𝒔𝑖 ) − 𝜉𝑖𝜆𝑐𝑎𝑖 + 𝛽 E

[
𝑄

(
𝒔′𝑖 , 𝑎𝑖 , 𝒛𝑖 , 𝜉𝑖 , 𝜆

)
| 𝜋 (𝜆)

]
.

where𝑄 is the Q-function, 𝑎𝑖 is the action of arm 𝑖 , 𝑠′
𝑖
is the state

transitioned to from 𝑠𝑖 under action 𝑎𝑖 , and 𝜋 (𝜆) is the optimal

policy under a given 𝜆. Notice that this relaxation decouples the Q-

functions of the arms, and therefore𝑄𝑖 can be solved independently

for a given 𝜆.

Now we discuss how we use feature-based Q-values and how

agents could learn from each other. During pretraining, having

decided which arms opt-in and out (lines 5-8), Algorithm 1 samples

an action-charge 𝜆 based on updated opt-in decisions 𝜉 and features

𝒛𝑖 (lines 9-11). Next, from opt-in arms we collect trajectories (lines

12-19), which are later used to train a single pair of actor/critic

networks for all arms, allowing the policy for one arm to benefit

from other arms’ data. After that, we update the policy network 𝜃

and the critic network 𝜙 (Line 21), using feature-based Q-values to

compute advantage estimates for the actor in PPO update. Critically,

feature-based Q-values updated with one arm’s data, improves the

policy for other arms. In real-world problems with missing feature

entries or less informative features, it is more important for agents

to learn from each other (see Table 1 in Sec 4.2). Intuitively, if a

model only learns from homogeneous arms, then we should expect

this model to perform poorly when used out-of-the-box on arms

with completely different behaviors.



Figure 1: Overview of the PreFeRMAB training procedure. A trained model consists of a policy network, a critic network, a
𝜆-network, and a StateShaping module. Arm states 𝑠𝑖 , features 𝑧𝑖 , and opt-in decisions 𝜉 are passed through the policy network
with an action-charge 𝜆. The policy network independently predicts action probabilities for each arm, which are then greedily
selected until the specified budget is reached. These selected actions are used with arm state, feature, and opt-in information to
update the 𝜆-network. Updated arm states 𝑠′ and rewards 𝑟 from the environment are then added to the buffer, and passed
through the state abstraction module before being fed back through the policy network.

We will now give a theoretical guarantee of multi-arm gener-

alization by considering the following simplified setting and as-

sumptions where we do not consider opt-in and opt-out. That is, in

each epoch we draw a new set of 𝑁 arms. We let the distribution

of arm features (i.e, z𝑖 ) to be denoted by the probability measure

𝜇∗. Each ‘sample’ for our policy network training consists of 𝑁

features corresponding to 𝑁 arms (z1, . . . , z𝑁 ), drawn i.i.d. from

the distribution 𝜇∗. Call the empirical distribution of (z𝑖 ) to be 𝜇.

During training, we receive 𝑛epochs i.i.d. draws of 𝑁 arm features

each, denoted by 𝜇1, . . . , 𝜇𝑛epochs

Let Θ denote the space of neural network weights of the policy

network (for clarity, we shorten the (𝜃, 𝜙) in Algorithm 1 to 𝜃 ). The

neural network inputs are Lagrangian multiplier 𝜆, state of an arm

𝑠 , its feature z and the output is 𝑎 ∈ A. Let 𝑉 (s, 𝜃, 𝜆, 𝜇) denote the
discounted reward, averaged over 𝑁 arms with features 𝜇 obtained

with the neural network with parameter 𝜃 , starting from the state

s (cumulative state of all arms). The proposition below shows the

generalization properties of the output of Algorithm 1. The proof

and a detailed discussion of the assumptions and consequences are

given in Section D.

Proposition 1. Suppose the following assumptions hold:

(1) Algorithm 1 learns neural network weights ˆ𝜃 ∈ Θ, whose
policy is optimal for each (𝜇𝑖 , 𝜆) for 1 ≤ 𝑖 ≤ 𝑛epochs and
𝜆 ∈ [0, 𝜆max]

(2) There exists 𝜃∗ ∈ Θ which is optimal for every instance (𝜇, 𝜆).

(3) Θ = B2 (𝐷,R𝑑 ), the ℓ2 ball of radius 𝐷 in R𝑑 .
(4) |𝑉 (s, 𝜃1, 𝜆, 𝜇)−𝑉 (s, 𝜃2, 𝜆, 𝜇) | ≤ 𝐿∥𝜃1−𝜃2∥ and |𝑉 (s, 𝜃, 𝜆1, 𝜇)−

𝑉 (s, 𝜃, 𝜆2, 𝜇) | ≤ 𝐿 |𝜆1 − 𝜆2 | for all 𝜃1, 𝜃2, 𝜃 ∈ Θ and 𝜆1, 𝜆2, 𝜆 ∈
[0, 𝜆max].

Then, the generalization error over unseen arms (𝜇) satisfies:

E
𝜇, ˆ𝜃
[ inf

𝜆∈[0,𝜆max ]
𝑉 (s, ˆ𝜃, 𝜆, 𝜇)] ≥ E𝜇 [ inf

𝜆∈[0,𝜆max ]
𝑉 (s, 𝜃∗, 𝜆, 𝜇)]

− 𝑂̃
(

1√
𝑛epochs𝑁

)
(3)

Here, 𝑂̃ hides polylogarithmic factors in 𝑛epochs, 𝑁 and constants
depending on 𝑑, 𝐷, 𝐿, 𝛽, 𝐵

𝑁
, 𝑐 𝑗 , 𝑅max and 𝜆max

The assumption of existence of 𝜃∗ is reasonable: This means

that there exists a neural network which gives the optimal policy

for a family of single-arm MDPs indexed by (z, 𝜆). Proposition 1

shows that when 𝑛epochs and 𝑁 are large, the Lagrangian relaxed

value function of the learned network is close to that of the optimal

network.

An important insight is that the generalization ability of the PreFeR-
MAB network becomes better as the number of arms per instance
becomes larger. This is counter intuitive since a system with a larger

number of agents are generally very complex. Jointly, the arms form

an MDP with |S|𝑁 states and |A|𝑁 actions. General multi-agent

RL problems with 𝑁 arms thus can suffer from an exponential de-

pendence on 𝑁 in their sample complexity for learning (see sample



Algorithm 1 PreFeRMAB (Training)

1: Input: n_epochs, n_steps, 𝜆-update frequency 𝐾 ∈ N+, and
system capacity 𝑁

2: Initialize policy network 𝜃 , critic network 𝜙 , and 𝜆-network Λ,
buffer = [], and state 𝒔 ∈ R𝑁 , features 𝒛𝑖 ∈ R𝑚

3: Initialize StateShaping, and set 𝒔 ←StateShaping(𝒔)
4: for epoch = 1, 2, . . . , n_epochs do
5: Current beneficiaries submit opt-in requests 𝜉𝑖 ∈ {0, 1}
6: New beneficiaries submit opt-in requests

7: Accept the first 𝑁 requests

8: Add dummy states / features for any unused capacity

9: Update the vector 𝜉 encoding opt-in decisions

10: Update features 𝒛𝑖 based on new beneficiaries’ features

11: Compute 𝜆 = Λ(𝒔, {𝑧𝑖 }𝑁𝑖=1
, 𝝃 )

12: for timestep 𝑡 = 1, . . . , n_steps do
13: for Arm 𝑖 = 1, . . . , N do
14: if Arm 𝑖 is opt-in (i.e. 𝜉𝑖 = 1) then
15: Sample an action 𝑎𝑖 ∼ 𝜃 (𝑠𝑖 , 𝜆, 𝒛𝑖 )
16: 𝑠′

𝑖
, 𝑟𝑖 = Simulate(𝑠𝑖 , 𝑎𝑖 )

17:
¯𝑠′
𝑖
= StateShaping(𝑠′

𝑖
)

18: Add tuple (𝑠𝑖 , 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , ¯𝑠′
𝑖
, 𝒛𝑖 ) to buffer

19: 𝑠𝑖 ← 𝑠′
𝑖
, 𝑠𝑖 ← ¯𝑠′

𝑖

20: Add tuple (𝜆, 𝝃 ) to buffer

21: Update the (𝜃, 𝜙) pair via PPO, using trajectories in buffer

22: if epoch // K = 0 then
23: Update Λ via Prop 2 using trajectories in buffer

24: Update 𝑟 (·) in StateShaping using (𝑠, 𝑟 )-tuples in buffer

complexity lower bounds in [20]). However, due to the structure of

RMABs and the Lagrangian relaxation, we achieve a better general-

ization with a larger 𝑁 . Our proof in the appendix shows that this is

due to the fact that a larger number of arms helps estimate the popu-

lation distribution 𝜇∗ of the arm features better. We show in Table 1

that indeed having more number of arms helps the PreFeRMAB

network generalize better over unseen instances.

3.3 A Novel 𝜆-network Updating Rule
In real-world health programs, we may observe new patients con-

stantly opt-in [37]. The opt-in / opt-out decisions render the updat-

ing rule in [30] unusable and add additional randomness to actions

taken by the agent. To overcome this challenge and to stabilize

training, we develop a new 𝜆-network updating rule.

Proposition 2. [𝜆-network updating rule] The equation for gra-
dient descent for the objective (Eq 2) with respect to 𝜆, with step size
𝛼 is:

Λ𝑡 =Λ𝑡−1 − 𝛼
(
𝐵

1 − 𝛽

)
− 𝛼

(
𝑁∑︁
𝑖=1

E

[
𝐻∑︁
𝑡=0

𝜉𝑖,𝑡 𝛽
𝑡𝑐𝑖,𝑡 + (1 − 𝜉𝑖,𝑡 )𝛽𝑡𝑐0,𝑡

])
,

where 𝑐𝑖,𝑡 is the cost of the action taken by the optimal policy on arm
𝑖 in round 𝑡 .

Critically, this update rule allows PreFeRMAB to handle stream-

ing RMABs, accommodating a changing number of arms without

retraining and achieving strong zero-shot performance across vari-

ous opt-in rates (see Table 3 and 15). Having established an updating

rule, we provide a convergence guarantee. The proofs are relegated

to Appendix E.

Proposition 3 (Convergence of 𝜆-network). Suppose the arm
policies converge to the optimal 𝑄-function for a given Λ𝑡 , then the
update rule (in Prop 2) for the 𝜆-network converges to the optimal as
the number of training epochs and the number of actions collected in
each epoch go to infinity.

3.4 Handling Continuous States with
StateShaping

Real-world problems may require continuous states with nonlinear

rewards [49]. Existing RMAB algorithms either use a human-crafted

discretization or fail to address challenging nonlinear rewards [30].

Discretization may result in loss of information and fail to gener-

alize to different population sizes. For example, the popular SIS

epidemic model [64] is expected to scale to a continuum limit as the

population size increases to infinity, and a continuous state-space

model can better handle scaling by using proportions instead of

absolute numbers. Under nonlinear rewards, naively using raw ob-

servations in training may result in poor performance (see Table 5).

We provide a StateShaping module to improve model stability and

performance.

Algorithm 2 StateShaping Subroutine

1: Input: estimator ∈ {Isotonic Regression,KNN}, states 𝒔 ∈ R𝑁 ,

data D of (𝑠, 𝑟 ) tuples
2: Output 𝒔 = 𝒔 if no normalization is desired

3: Compute

𝑟𝑚𝑖𝑛 = min

𝑠′ : 𝑠′∈D
𝑟 (𝑠′), 𝑟𝑚𝑎𝑥 = max

𝑠′ : 𝑠′∈D
𝑟 (𝑠′)

𝑠𝑚𝑖𝑛 = min

𝑠′∈D
𝑠′, 𝑠𝑚𝑎𝑥 = max

𝑠′∈D
𝑠′

4: Compute 𝑟 (𝑠𝑖 ) using the choice of Estimator.

5: Output 𝒔, where 𝑠𝑖 =
𝑟 (𝑠𝑖 )−𝑟min

𝑟max−𝑟min

(𝑠max − 𝑠min),∀𝑖

In Algorithm 2, users can choose whether to obtain abstract

state [1] from raw observations (lines 2). We compute ranges of

reward and raw observations, and obtain an reward estimate (lines

3-4). After that, we automatically refine the raw observation such

that reward is a linear function of the abstract state (line 4), im-

proving model stability for challenging reward functions. Here a

key assumption is that reward is an increasing function of the raw

observation, which is common in RMABs [30]. Notice as we collect

more observations, the accuracy of the reward estimator 𝑟 (·) will
improve (it is updated in line 24 of Algorithm 1).

3.5 Inference using Pretrained Model
An important difference between training and inference is that

during inference time, we strictly enforce the budget constraint on

the trained model, by greedily selecting highest probability actions

until the budget is reached. The rest of the inference components

are similar to the training component.



Algorithm 3 PreFeRMAB (Inference)

1: Input: : States 𝒔, costs 𝐶 , budget 𝐵, features 𝒛𝑖 ∈ R𝑚 , opt-in

decisions 𝝃 , agent actor 𝜃 , 𝜆-network, StateShaping routine

with trained estimator 𝑟 (·)
2: Compute 𝜆 = Λ(𝒔, {𝑧𝑖 }𝑁𝑖=1

, 𝝃 )
3: for Arm 𝑖 = 1, . . . , N do
4: if Arm 𝑖 is opt-in (i.e. 𝜉𝑖 = 1) then
5: 𝑠𝑖 = StateShaping(𝑠𝑖 )
6: Compute 𝑝𝑖 ∼ 𝜃 (𝑠𝑖 , 𝜆, 𝒛𝑖 )
7: 𝒂 = GreedyProba(𝑝,𝐶, 𝐵) ⊲ Greedily select highest probability

actions until budget B is reached

4 EXPERIMENTAL EVALUATION
We provide experimental evaluations of our model in three sepa-
rate domains, including a synthetic setting, an epidemic modeling

setting, as well as a maternal healthcare intervention setting. We

first describe these three experimental domains. Then, we provide

results for PreFeRMAB in a zero-shot evaluation setting, demonstrat-

ing the performance of our model on new, unseen test arms drawn
from distributions distinct from those in training. Here, we demon-

strate the flexibility of PreFeRMAB, including strong performance

across domains, state representations (discrete vs. continuous), and

over various challenging reward functions. Finally, we demonstrate

the strength of using PreFeRMAB as a pre-trained model, enabling
faster convergence for fine-tuning on a specific set of evaluation

arms.

In Appendix B, we provide ablation studies over (1) a wider
range of opt-in rates (2) different feature mappings (3) DDLPO

topline with and without features (4) more problem settings.

4.1 Experimental Settings
Features: In all experiments, we generate features by projecting

parameters that describe the ground truth transition dynamics

into features using randomly generated projection matrices. The

dimension of feature equals the number of parameters required to

describe the transition dynamics. In Appendix B, we provide results

on different feature mappings.

Synthetic: Following [30], we consider a synthetic dataset with

binary states and binary actions. The transition probabilities for

each arm 𝑖 are represented by matrices 𝑇
(𝑖 )
𝑠=0

and 𝑇
(𝑖 )
𝑠=1

for arm 𝑖 at

states 0 and 1 respectively:

𝑇
(𝑖 )
𝑠=0

=

[
𝑝00 1 − 𝑝00

𝑝01 1 − 𝑝01

]
, 𝑇
(𝑖 )
𝑠=1

=

[
𝑝10 1 − 𝑝10

𝑝11 1 − 𝑝11

]
Each 𝑝 𝑗𝑘 corresponds to the probability of transitioning from

state 𝑗 to state 0 when action 𝑘 is taken. These values are sampled

uniformly from the intervals:

𝑝00 ∈ [0.4, 0.6], 𝑝01 ∈ [0.4, 0.6], 𝑝10 ∈ [0.8, 1], 𝑝11 ∈ [0.0, 1]

SIS Epidemic Model: Inspired by the vast literature on agent-

based epidemic modeling, we adapt the SIS model given in [64],

following a similar experiment setup as described in [30]. Arms

𝑝 represent a subpopulation in distinct geographic regions; states

𝑠 are the number of uninfected people within each arm’s total

population 𝑁𝑝 ; the number of possible states is 𝑆 . Transmission

within each arm is guided by parameters: 𝜅 , the average number of

contacts within the arm’s subpopulation in each round, and 𝑟infect,

the probability of becoming infected after contact with an infected

person.

In this setting, there is a budget constraint over interventions.

There are three available intervention actions 𝑎0, 𝑎1, 𝑎2 that affect

the transmission parameters: 𝑎0 represents no action; 𝑎1 represents

messaging about physical distancing; 𝑎2 represents the distribution

of face masks. We discuss additional details in Appendix A.

ARMMAN: Similar to the set up in [10, 30], we model the real

world maternal health problem as a discrete state RMAB. We aim

to encourage engagement with automated health information mes-

saging. There are three possible states, presenting self-motivated,

persuadable, and lost cause. The actions are binary. There are 6

uncertain parameters per arm, sampled from uncertainty intervals

of 0.5 centered around the transition parameters that align with

summary statistics given in [10].

Continuous State Modeling: Continuous state restless bandits
have important applications [18, 32, 54]. By not explicitly having a

switch in the model (switching between discrete and continuous

state space), we enable greater model flexibility. To demonstrate

this, we consider both a Continuous Synthetic and a Continuous

SIS modeling setting. We provide details of these settings in Appen-

dix A.3.

We present additional details, including hyperparameters and

StateShaping illustration in Appendix A.

4.2 PreFeRMAB Zero-Shot Learning
We first consider three challenging datasets in the discrete state

space. After that, we present results on datasets with continuous

state spaces with more complex reward functions and transition

dynamics.

Pretraining. For each pretraining iteration, we sample from a

binomial with mean 0.8 to determine which arms will be opted-in

given system capacity 𝑁 . For new arms, we sample new transition

dynamics to allow the model to see a wider range of arm features.

Evaluation. We compare PreFeRMAB to Random Action and

No Action baselines. In every table in this subsection, we present

the reward per arm averaged over 50 trials, on new, unseen arms
arm sampled from the testing distribution.

Multi-arm Generalization: Table 1 on Synthetic illustrates

that PreFeRMAB, learning from multi-arm generalization, achieves
stronger performance when the number of unique arms (i.e. arms

with unique features) seen during pretraining increases. Addition-

ally, in practice arm features may be missing or not always reliable,

such as in real-world ARMMAN data [39]. Our results demonstrate

that when features are masked, arms could learn from similar arms’

experience.

Discrete State Settings with Different Distributional Shifts:
Results on Synthetic (Table 2) shows PreFeRMAB consistently out-

performs under varying amounts of distributional shift, measured

in Wasserstein distance. Results on SIS (Table 3) shows PreFeRMAB

performs well in settings with large state space 𝑆 = 150 and mul-

tiple actions, under various testing distributions and opt-in rates.

Results on ARMMAN (Table 4) shows PreFeRMAB could handle



Table 1: Multi-arm generalization results on Synthetic (opt-
in 100%). With the same total amount of data, PreFeRMAB
achieves stronger performance when pretrained on more
unique arms, especiallywhen input arm features aremasked.

System capacity 𝑁 = 21. Budget 𝐵 = 7.
# Unique training arms 45 33 21

No Action 2.88±0.17 2.88±0.17 2.88±0.17

Random Action 3.25±0.22 3.25±0.22 3.25±0.22

PreFeRMAB (2/4 Feats. Masked) 3.81±0.23 3.79±0.22 3.59±0.21

PreFeRMAB (1/4 Feats. Masked) 3.92±0.24 3.70±0.21 3.58±0.20

PreFeRMAB (0/4 Feats. Masked) 4.02±0.26 3.80±0.22 3.78±0.21

Table 2: Results on Synthetic (opt-in 100%). For each system
capacity, we pretrain a model and present zero-shot results
under different amounts of distributional shift.

Wasserstein 0.05 0.10 0.15 0.20 0.25
Distance

System capacity 𝑁 = 48. Budget 𝐵 = 16.

No Action 3.07±0.10 2.89±0.08 2.68±0.07 2.49±0.09 2.35±0.07

Random Action 3.49±0.09 3.25±0.09 2.99±0.16 2.80±0.17 2.57±0.17

PreFeRMAB 4.50±0.09 4.30±0.10 3.81±0.17 3.79±0.18 3.46±0.12

System capacity 𝑁 = 96. Budget 𝐵 = 32.

No Action 3.09±0.08 2.88±0.04 2.74±0.05 2.62±0.06 2.49±0.06

Random Action 3.44±0.14 3.23±0.09 3.05±0.09 2.90±0.10 2.70±0.11

PreFeRMAB 4.44±0.13 4.26±0.13 4.12±0.13 3.97±0.16 3.75±0.12

Table 3: Results on SIS (𝑁 = 20, 𝐵 = 16, 𝑆 = 150). We pretrain a
model and present zero-shot results on various distributions.
During training, 𝑎𝑒 𝑓 𝑓

1
, 𝑎

𝑒 𝑓 𝑓

1
are uniformly sampled from [1, 7].

Number of arms
System capacity 80% 85% 90% 95% 100%

Parameters 𝑎
𝑒 𝑓 𝑓

1
, 𝑎

𝑒 𝑓 𝑓

1
are uniformly sampled from [2, 8].

No Action 5.23±0.17 5.27±0.16 5.28±0.16 5.26±0.14 5.28±0.13

Random Action 6.94±0.15 7.00±0.16 7.03±0.15 6.97±0.14 6.99±0.12

PreFeRMAB 7.64±0.27 7.75±0.25 7.96±0.18 7.80±0.16 7.82±0.11

Parameters 𝑎
𝑒 𝑓 𝑓

1
, 𝑎

𝑒 𝑓 𝑓

1
are uniformly sampled from [3, 9].

No Action 5.29±0.16 5.30±0.17 5.29±0.15 5.26±0.14 5.28±0.13

Random Action 7.21±0.15 7.28±0.18 7.26±0.15 7.22±0.13 7.22±0.12

PreFeRMAB 7.77±0.29 7.87±0.28 7.90±0.22 7.95±0.16 7.95±0.11

more challenging settings that mimics the scenario of a real-world

non-profit organization using RMABs to allocate resources.

Continuous State Settings: In addition to results in discrete-

state environment settings shown above, we also evaluate the per-

formance of PreFeRMAB on continuous state restless multi-armed

bandit settings. Our results (Table 5) show that StateShaping is

crucial in handling continuous states, where the reward function

can be more challenging. We provide additional evaluations in Ta-

ble 6, showing PreFeRMAB consistently outperforms in complex

transition dynamics, across various opt-in rates, environments, and

system capacities. More details are provided in Appendix A.

Comparisonwith anAdditional Baseline: DDLPO [30] could

not handle distributional shifts or various opt-in rates, the more

challenging settings that PreFeRMAB is designed for. Nevertheless,

Table 4: Results on ARMMAN (𝑁 = 25, 𝐵 = 7, 𝑆 = 3). We
pretrain a model and present zero-shot results on various
testing distributions. During training, the proportion of self-
motivated, persuadable, and lost cause arms are 20%, 20%,
annd 60% respectively.

Number of arms
System capacity 80% 85% 90% 95% 100%

40% motivated, 20% persuadable, and 40% lost cause.

No Action 2.39±0.30 2.32±0.28 2.16±0.25 2.26±0.28 2.25±0.30

Random Action 3.04±0.40 3.06±0.38 3.00±0.36 3.14±0.36 3.24±0.32

PreFeRMAB 5.47±0.41 5.00±0.37 4.95±0.29 5.34±0.27 5.03±0.37

40% motivated, 40% persuadable, and 20% lost cause.

No Action 2.07±0.29 2.19±0.28 2.19±0.30 2.05±0.24 2.17±0.28

Random Action 3.04±0.37 3.02±0.33 2.99±0.30 3.12±0.31 3.15±0.29

PreFeRMAB 5.06±0.36 4.81±0.35 5.13±0.34 5.01±0.26 5.00±0.28

Table 5: Results for Continuous Synthetic domain
(N=21,B=7.0) with challenging rewards 𝑟 (𝑠). We compare
average zero-shot reward for PreFeRMAB vs. PreFeRMAB
with StateShaping.

Reward Function Scaled Linear Exponential
𝑟 (𝑠) = min(2𝑠, 1) 𝑟 (𝑠) = min(𝑒𝑠 − 1, 1)

No Action 1.03 ± 0.32 0.71 ± 0.26

Random Action 4.18 ± 0.45 3.40 ± 0.43

PreFeRMAB 4.50 ± 0.39 3.80 ± 0.35

PreFeRMAB, With Shaping 5.28 ± 0.55 4.38 ± 0.55

Table 6: Results on continuous states. For each problem in-
stance, we pretrain a model.

Number of arms
System capacity 80% 85% 90% 95% 100%

Continuous Synthetic (N=21, B=7.0, S=2)

No Action 0.70±0.25 0.71±0.25 0.70±0.23 0.70±0.23 0.66±0.21

Random Action 3.44±0.48 3.43±0.45 3.45±0.41 3.37±0.41 3.20±0.38

PreFeRMAB 3.94±0.31 3.76±0.33 4.01±0.31 4.02±0.29 3.67±0.27

Continuous SIS Model (N=20, B=16)

No Action 5.64±0.25 5.68±0.19 5.57±0.21 5.48±0.18 5.62±0.17

Random Action 7.11±0.22 7.31±0.22 7.23±0.22 7.24±0.21 7.18±0.17

PreFeRMAB 7.91±0.17 8.08±0.11 7.95±0.14 7.98±0.13 7.82±0.12

we provide comparisons with DDLPO in settings with no distribu-

tional shift (Table 7, see also Appendix B.4). Notably, PreFeRMAB

zero-shot performance on unseen arms is near that of DDLPO,which

is trained and tested on the same set of arms.

4.3 PreFeRMAB Fast Fine-Tuning
Having shown the zero-shot results of PreFeRMAB, we now demon-

strate finetuning capabilities of the pretrained model. In Figure 2,

we compare the number of samples required to train DDLPO from
scratch vs. the number of samples for fine-tuning PreFeRMAB start-

ing from a pre-trained model (additional results in Appendix A.5).

Results suggests the cost of pretraining can be amortized over differ-

ent downstream instances. A non-profit organization using RMAB

models may have new beneficiaries opting in every week, and train-

ing a new model from scratch every week can be 3-20 times more

expensive than fine-tuning our pretrained model.



Table 7: Comparison of PreFeRMAB zero-shot performance
on unseen arms against that of DDLPO trained and tested on
the same set of arms. For each problem instance, we pretrain
a model.

Number of arms
System capacity 80% 85% 90% 95% 100%

Synthetic with 𝑁 = 96, 𝐵 = 32, 𝑆 = 2.

No Action 3.22±0.12 3.24±0.12 3.19±0.11 3.18±0.11 3.18±0.11

Random Action 3.62±0.13 3.66±0.13 3.58±0.13 3.60±0.12 3.60±0.12

PreFeRMAB 4.63±0.12 4.71±0.12 4.53±0.13 4.47±0.12 4.61±0.10

DDLPO (topline) n/a n/a n/a n/a 4.58±0.13

SIS with 𝑁 = 20, 𝐵 = 16, 𝑆 = 150.

No Action 5.33±0.16 5.30±0.15 5.31±0.14 5.29±0.13 5.28±0.13

Random Action 7.03±0.17 7.13±0.16 7.02±0.14 7.11±0.13 7.06±0.13

PreFeRMAB 8.35±0.12 8.38±0.11 8.26±0.11 8.10±0.11 8.00±0.10

DDLPO (topline) n/a n/a n/a n/a 8.09±0.11

ARMMAN with 𝑁 = 25, 𝐵 = 7, 𝑆 = 3.

No Action 2.12±0.26 2.30±0.29 2.29±0.27 2.19±0.23 2.26±0.25

Random Action 2.86±0.32 3.27±0.40 3.01±0.30 3.09±0.35 2.96±0.31

PreFeRMAB 5.06±0.34 5.26±0.33 4.68±0.33 4.75±0.35 4.61±0.27

DDLPO (topline) n/a n/a n/a n/a 4.68±0.09

Figure 2: Comparison of samples per arm required by DDLPO
and PreFeRMAB (fine-tuning using a pretrained model) to
achieve maximum DDLPO reward across different environ-
ments. PreFeRMAB achieves the maximum topline reward
with significantly fewer samples than DDLPO. Averages
across training seeds are reported as interquartile means.

5 CONCLUSION
Our pretrained model (PreFeRMAB) leverages multi-arm general-

ization, a novel update rule for a crucial 𝜆-network, and a State-

Shaping module for challenging reward functions. PreFeRMAB

demonstrates general zero-shot ability on unseen arms, and can

be fine-tuned on specific instances in a more sample-efficient way

than training from scratch.

ETHNICAL STATEMENT
The presented methods do not carry direct negative societal impli-

cations. However, training reinforcement learning models should

be done responsibly, especially given the safety concerns associated

with agents engaging in extreme, unsafe, or uninformed exploration

strategies. While the domains we considered such as ARMMAN

do not have these concerns, the approach may be extended to ex-

treme environments; in these cases, ensuring a robust approach to

training reinforcement models is critical.
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A ADDITIONAL EXPERIMENTAL DETAILS
A.1 Hyperparameters
In Table 8, we present hyperparameters used, with exceptions (1)

for Continuous Synthetic, we use lambda scheduler discount rate =

0.95 (2) for Continuous SIS, we use training opt-in rate = 0.8.

In our experiments, all neural networks have 2 hidden layers each

with 16 neurons and tanh activation. The output layer has identity

activation and its size is determined by the number of actions (3

for SIS and Continuous SIS, and 2 for other environments).

The 𝑙𝑎𝑚𝑏𝑑𝑎-network training is similar to that in Killian et
al.[30]. After every n_subepochs, we update the 𝜆-network and

encourage the actor network to explore new parts of the state space

immediately after the 𝑙𝑎𝑚𝑏𝑑𝑎-update (this exploration is controlled

by the temperature parameter that weights the entropy term in the

actor loss functions).

Different from Killian et al.[30], we use a 𝜆-network learning rate
scheduler, which we found improves the performance and stability

of the model.

Table 8: Hyperparameter values.

hyperparameter value

training opt-in rate 0.8

agent clip ratio 2.0e+00

lambda freeze epochs 2.0e+01

start entropy coeff 5.0e-01

end entropy coeff 0.0e+00

actor learning rate 2.0e-03

critic learning rate 2.0e-03

lambda initial learning rate 2.0e-03

lambda scheduler discount rate 0.99

trains per epoch 2.0e+01

n_subepochs 4.0e+00

A.2 SIS Modeling (Discrete) Experimental
Details

Recall that each arm 𝑝 represents a subpopulation in distinct geo-

graphic regions. The state of each arm 𝑠 is the number of uninfected

people within the arm’s total population 𝑁𝑝 . Transmission within

each arm is guided by parameters: 𝜅, the average number of con-

tacts within the arm’s subpopulation in each round, and 𝑟infect, the

probability of becoming infected after contact with an infected per-

son. The probability that a single uninfected person gets infected is

then:

𝑞 = 1 − 𝑒−𝜅 ·
𝑆−𝑠
𝑆
·𝑟𝑖𝑛𝑓 𝑒𝑐𝑡 ,

where 𝑆 is the number of possible states, and 𝑠 ∈ [𝑆] is the current
state. Note

𝑆−𝑠
𝑆

is the percentage of people who are currently in-

fected. The number of infected people in the next timestep follows

a binomial distribution 𝐵(𝑆, 𝑞).
Recall that there are three available intervention actions 𝑎0, 𝑎1, 𝑎2

that affect the transmission parameters: 𝑎0 represents no action; 𝑎1

represents messaging about physical distancing, dividing 𝜅 by 𝑎
eff
1
;

𝑎2 represents the distribution of face masks, dividing 𝑟infect by 𝑎
eff
2
.

The actions costs are 𝑐 = {0, 1, 2}. Following the implementation in

[30], these parameters are sampled within ranges:

𝜅 ∈ [1, 10], 𝑟infect ∈ [0.5, 0.99], 𝑎eff
1
∈ [1, 10], 𝑎eff

2
∈ [1, 10]

A.3 Continuous States Experimental Details
We consider a synthetic dataset with continuous states and binary

actions. For the current state 𝑠𝑖 of arm 𝑖 , and action 𝑎, the next state

𝑠′
𝑖
is represented by the transition dynamic:

𝑠′𝑖 =

{
clip (𝑠𝑖 + N(𝜇𝑖0, 𝜎𝑖0), 0, 1) if 𝑎 = 0

clip (𝑠𝑖 + N(𝜇𝑖1, 𝜎𝑖1), 0, 1) if 𝑎 = 1

Where the transition dynamics are sampled uniformly from the

intervals (𝜎𝑖0 = 𝜎𝑖1 = 0.2 is fixed):

𝜇𝑖0 ∈ [−0.5,−0.1], 𝜇𝑖1 ∈ [0.1, 0.5] .
We also consider continuous state experiments in real-world

settings. In the discrete state SIS Epidemic Model described above,

each arm represents a subpopulation, and the state of that arm

represents the number of uninfected people within the subpopula-

tion. In real-world public health settings such as COVID-19 control,

interventions like quarantine and mask mandates may be imposed

on subpopulations of very large sizes such as an entire city. The SIS

model is expected to scale to a continuum limit as the population

size increases to infinity. Thus, a SIS model with population 1 mil-

lion would behave roughly similar to that with population 1 billion

in terms of the proportions. This notion is inherently captured by

continuous models but not by those dealing with absolute numbers.

Following Killian et al.[30], within an arm, any uninfected person

will get infected with the same probability. Thus, the number of un-

infected people in the next timestep follows a binomial distribution.

It is well-known that a normal distribution N(𝜇, 𝜎2) well approxi-
mates a binomial distribution 𝐵(𝑛, 𝑝), with the choice 𝜇 = 𝑛𝑝 and

𝜎2 = 𝑛𝑝 (1 − 𝑝), when 𝑛 is sufficiently large.

A.4 Distributional Shift Details
In real-world resources allocation problems, we may observe dis-

tribution shifts in arms, i.e., arms in testing are sampled from a

distribution slightly different from that in training. In public health

settings, a non-profit organization solving RMAB problems to al-

locate resources to beneficiaries may observe that beneficiaries’

behavior or feature information change over time [30, 60]. Ad-

ditionally, a non-profit organization may have new beneficiaries

joining who are in a different subpopulation. In Table 2, we pro-

vide ablation results illustrating that PreFeRMAB is robust to
distribution shift in arms. We measure the shift in distribution

usingWasserstein distance, which indicates the cost of transporting

one unit mass [15, 41, 45]. The results demonstrate that even on

arm samples from distributions that significantly deviate from that

seen in training, PreFeRMAB still achieves strong performance and

outperforms baselines.

For each arm, the associated Markov Decision Process (MDP) has

only two discrete states, the transition dynamics 𝑝 (𝑠′ |𝑠, 𝑎), repre-
senting the probability of transitioning to state 𝑠′ from state 𝑠 given

action 𝑎, can be described by four Bernoulli random variables, one

for each combination of state and action. By introducing a uniform

distribution shift, we can modify the transition probabilities of the

Bernoulli random variable associated with each state-action pair by



adding a constant 𝛿 to the parameter of each Bernoulli distribution.

Consequently, this results in a consistent shift in the transition

probabilities across all states and actions.

Furthermore, this delta is exactly the Wasserstein distance be-

tween the two distributions, which we show here. Suppose we have

two discrete probability distributions, 𝑃 and 𝑄 , with their respec-

tive probabilities associated with the outcomes 𝑥𝑖 and 𝑦 𝑗 . The The

1-Wasserstein distance, also known as the Earth Mover’s Distance

𝑊 (𝑃,𝑄), can be calculated by solving the following optimization

problem:

𝑊 (𝑃,𝑄) = inf

𝛾 ∈Γ (𝑃,𝑄 )

∑︁
𝑖, 𝑗

|𝑥𝑖 − 𝑦 𝑗 |𝛾 (𝑥𝑖 , 𝑦 𝑗 ),

where Γ(𝑃,𝑄) is the set of all joint distributions𝛾 with marginals

𝑃 and𝑄 , and 𝛾 (𝑥𝑖 , 𝑦 𝑗 ) represents the amount of "mass" moved from

𝑥𝑖 to 𝑦 𝑗 .

Note𝑊 (𝑃,𝑄) between two Bernoulli distributions with parame-

ters 𝑏1 and 𝑏2 can be succinctly determined as |𝑏2 − 𝑏1 |. This is be-
cause each Bernoulli distribution has only two potential outcomes,

0 and 1, and so moving mass from one outcome to another across

these distributions involves a shift of probability mass |𝑏2 − 𝑏1 |
across the one-unit distance between the two points. Therefore,

without loss of generality assuming 𝑏2 ≥ 𝑏1, the Wasserstein dis-

tance simplifies to the non-negative difference 𝑏2 − 𝑏1.

A.5 Fast Fine-Tuning

Figure 3: Comparison of the percentage of the final DDLPO
(Killian et al. [2022] topline) reward achieved by the number
of samples per arm. In DDLPO, samples are used for train-
ing from scratch; in PreFeRMAB, samples are used to fine-
tune a pretrained PreFeRMAB model. Results indicate that
PreFeRMAB, from zero-shot results, achieves near-optimal
performance, and requires a small fraction of the required
DDLPO samples to achieve final DDLPO performance.

In subsection 4.3, we demonstrate that, in addition to strong zero-

shot performance, PreFeRMAB may also be used as a pretrained
model for fast fine-tuning in specific domains. In particular, we

demonstrate that we may start from a pre-trained PreFeRMAB

model, and train on additional samples for a fixed environment

(with fixed arm transition dynamics). We showed that using this

pre-trained model can help achieve topline DDLPO performance in

significantly fewer fine-tuning samples than required by DDLPO to

train from scratch. In Figure 3, we further visualize these results in

training curves comparing DDLPO and PreFeRMAB. These training

curves, which plot the number of samples per arm against the

achieved percentage of final DDLPO reward, are shown for the

discrete-state synthetic environment setting for N=21, B=7.0

The results in Figure 3 demonstrate that PreFeRMAB shows both

1) strong zero-shot performance, achieving near-topline reward

with no fine-tuning samples required, as well as 2) a significant

reduction in the number of samples required to achieve final DDLPO

performance. In particular, we note that DDLPO, before training,

achieves a reward only marginally higher than the average Random

Action reward. Alternatively, PreFeRMAB begins, in a zero-shot

setting, with a much higher initial reward value. We also observe

that PreFeRMAB requires significantly fewer samples per arm to

achieve the final DDLPO reward. This is particularly critical in

high-stakes, real-world settings where continually sampling arms

from the environment may be prohibitively expensive, especially

for low-resource NGOs.

A.6 StateShaping
Figure 4 provides a simple example, illustrating howwe adapt states

through the state abstraction procedure. In this particular example,

the reward is an increasing function of the state, and the reward

plateaus at state 0.5, i.e. 𝑠 ∈ [0.5, 1] achieve the same reward. We

map all raw observations in the range [0.5, 1] to abstract state 1.

We note that this process is automated, using data collected on

arm states and reward from prior (historical) samples to 1) estimate

the reward of a current arm, and 2) use this reward to normalize

the arm state. We demonstrate how these states are mapped to

normalized values in Table 4.

In Table 5, we show results in two settings after 30 epochs of

training, evaluating on a separate set of test arms for zero-shot eval-

uation. Continuous transition dynamics are used directly as input

features for training and evaluation. The results illustrate that state

abstraction can help achieve additional performance gains for vari-

ous challenging reward functions. Drawing from prior literature on

state abstraction, this modular component of PreFeRMAB may also

serve as a placeholder for future automated state abstraction proce-

dures to improve generalizability and robustness of PreFeRMAB

across domains with challenging reward functions.

Figure 4: Illustration for StateShaping.



B ABLATION STUDIES
In this section, we provide ablation results over (1) a wider range

of opt-in rates than presented in the main paper (Table 13) (2) dif-

ferent feature mappings, including linear and non-linear feature

transformations of the original transition probabilities (3) DDLPO

topline (Killian et al. [30]) with and without transition probability

features as inputs (4) results in more problem settings. The abla-

tion results showcase that PreFeRMAB consistently achieve strong

performance and having access to feature information does not

provide PreFeRMAB an unfair advantage over DDLPO.

B.1 Opt-in Rates

Table 9: Robustness to different opt-in rates with identity
mapping. Evaluation follows Table 11: we run for 50 trials
with 2 total number of states for each arm, and pretrain a
model for each system capacity 𝑁 and test generalization on
different opt-in rates.

Number of arms
System capacity 30% 40% 50% 60% 70%

System capacity 𝑁 = 21. Budget 𝐵 = 7.

No Action 3.09 ± 0.31 3.10 ± 0.32 3.12 ± 0.29 3.14 ± 0.25 3.16 ± 0.22

Random Action 3.57 ± 0.48 3.46 ± 0.48 3.55 ± 0.35 3.55 ± 0.34 3.57 ± 0.33

PreFeRMAB 3.78 ± 0.72 3.75 ± 0.70 4.16 ± 0.57 4.52 ± 0.54 4.45 ± 0.42

System capacity 𝑁 = 48. Budget 𝐵 = 16.

No Action 3.19 ± 0.27 3.15 ± 0.23 3.13 ± 0.12 3.17 ± 0.12 3.17 ± 0.14

Random Action 3.44 ± 0.26 3.43 ± 0.23 3.46 ± 0.20 3.47 ± 0.17 3.44 ± 0.17

PreFeRMAB 3.90 ± 0.50 3.64 ± 0.30 3.87 ± 0.27 3.85 ± 0.25 4.06 ± 0.31

System capacity 𝑁 = 96. Budget 𝐵 = 32.

No Action 3.21 ± 0.17 3.17 ± 0.20 3.17 ± 0.15 3.18 ± 0.14 3.17 ± 0.13

Random Action 3.54 ± 0.22 3.55 ± 0.23 3.58 ± 0.18 3.55 ± 0.18 3.56 ± 0.13

PreFeRMAB 3.93 ± 0.33 3.72 ± 0.23 3.79 ± 0.18 4.02 ± 0.21 4.16 ± 0.25

Table 10: Robustness to different opt-in rates with linear-
mappings. Evaluation follows Table 11: we run for 50 trials
with 2 total number of states for each arm, and pretrain a
model for each system capacity 𝑁 and test generalization on
different opt-in rates.

Number of arms
System capacity 30% 40% 50% 60% 70%

System capacity 𝑁 = 21. Budget 𝐵 = 7.

No Action 3.13 ± 0.36 3.19 ± 0.34 3.17 ± 0.27 3.17 ± 0.23 3.15 ± 0.24

Random Action 3.60 ± 0.53 3.62 ± 0.40 3.59 ± 0.34 3.58 ± 0.36 3.57 ± 0.32

PreFeRMAB 3.79 ± 0.49 3.76 ± 0.49 3.79 ± 0.39 3.89 ± 0.39 3.86 ± 0.46

System capacity 𝑁 = 48. Budget 𝐵 = 16.

No Action 3.15 ± 0.23 3.17 ± 0.21 3.18 ± 0.16 3.18 ± 0.13 3.19 ± 0.14

Random Action 3.41 ± 0.29 3.52 ± 0.27 3.50 ± 0.20 3.49 ± 0.22 3.48 ± 0.17

PreFeRMAB 3.61 ± 0.51 4.08 ± 0.34 4.45 ± 0.30 4.44 ± 0.30 4.44 ± 0.29

System capacity 𝑁 = 96. Budget 𝐵 = 32.

No Action 3.18 ± 0.18 3.17 ± 0.13 3.18 ± 0.14 3.19 ± 0.14 3.16 ± 0.15

Random Action 3.54 ± 0.22 3.57 ± 0.22 3.55 ± 0.14 3.58 ± 0.15 3.56 ± 0.15

PreFeRMAB 3.74 ± 0.21 3.68 ± 0.23 3.76 ± 0.21 3.98 ± 0.19 4.06 ± 0.22

Throughout the main paper, we provide results for evaluation

opt-in rates in the range 80%-100%. In Table 9 and Table 10, we

provide ablation results for opt-in rates in a wider range of 30%-
70%. During the training phase, we maintain an expected opt-in

rate of 80%, which may generally range from 70%-90% every train-

ing iteration. Given this training configuration, we demonstrate

strong results in the main paper for evaluating on a similar range

of test-time opt-ins from 80% to 100%. However, we also further

demonstrate in Table 9 and Table 10 that our pretrained PreFeRMAB

model, despite a training opt-in rate around 80% in expectation,

achieves strong results on testing opt-in rates from a substantially

different range. These results highlight PreFeRMAB’s flexibility and

ability to generalize to unseen opt-in rates, which may be critical

in real-world applications where arms frequently exit and re-enter

the environment.

B.2 Feature Mapping

Table 11: Results on non-linearly transformed synthetic dis-
crete states. We present final reward divided by the number
of arms, averaged over 50 trials with each trial consisting
on 10 rounds, for a total of 500 evaluations. The number of
states 𝑆 = 2. For each system capacity 𝑁 , we pretrain a model

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity 𝑁 = 21. Budget 𝐵 = 7.

No Action 3.46 ± 0.20 3.39 ± 0.19 3.40 ± 0.17 3.40 ± 0.18 3.22 ± 0.16

Random Action 3.80 ± 0.31 3.76 ± 0.30 3.79 ± 0.29 3.76 ± 0.31 3.58 ± 0.27

PreFeRMAB 4.57 ± 0.29 4.70 ± 0.33 4.70 ± 0.29 4.64 ± 0.29 4.37 ± 0.25

System capacity 𝑁 = 48. Budget 𝐵 = 16.

No Action 3.22 ± 0.13 3.28 ± 0.13 3.22 ± 0.12 3.29 ± 0.12 3.21 ± 0.11

Random Action 3.56 ± 0.19 3.65 ± 0.18 3.56 ± 0.18 3.65 ± 0.17 3.57 ± 0.17

PreFeRMAB 3.94 ± 0.23 4.00 ± 0.23 3.86 ± 0.20 3.90 ± 0.16 3.73 ± 0.16

System capacity 𝑁 = 96. Budget 𝐵 = 32.

No Action 3.24 ± 0.10 3.24 ± 0.10 3.21 ± 0.10 3.21 ± 0.10 3.20 ± 0.10

Random Action 3.61 ± 0.14 3.62 ± 0.15 3.57 ± 0.15 3.57 ± 0.13 3.57 ± 0.14

PreFeRMAB 4.35 ± 0.16 4.36 ± 0.15 4.29 ± 0.14 4.23 ± 0.13 4.20 ± 0.12

In our main paper, we use linear feature mapping, projecting

true transition probabilities to features with randomly generated

projection matrices. This can be represented by y = Ax, where y
are the output features, A is the transformation matrix, and x de-

notes the ground truth arm transition probabilities. To demonstrate

the robustness of our approach to various types of input features,

we also consider more challenging, non-linear feature map-
pings, which may introduce higher representational complexity

as compared to linear feature mappings. For these ablation results,

we use a sigmoidal transformation, which can be expressed as

y = 1

1+exp(−Ax) . We demonstrate the results using these non-linear

feature mappings in Table 11. These results indicate that PreFeR-

MAB consistently outperforms baselines under various forms of

feature mappings, and is robust to both linear and non-linear input

features.

B.3 DDLPO Topline with Features
In Table 12, we show that having access to features does not
boost the performance of DDLPO. Features help PreFeRMAB

generalize to unseen arms and achieve strong zero-shot results, as

demonstrated in the main paper. However, one may ask whether

access to these features, as used by PreFeRMAB, may provide an un-

fair reward advantage over DDLPO, which in its original form [30]

does not utilize feature information. That is, because input features

in our experiments are derived from the original arm transition

probabilities, it may be the case that these are used to achieve better

performance. To determine whether there is an advantage from

utilizing these features, we modify the original DDLPO model to



Table 12: Performance comparison of Killian et al. [2022]
DDLPO topline, with and without ground truth transition
probabilities as input features. Results are shown for evalua-
tion on a single, fixed training seed. The results suggest that
transition probability features do not significantly improve
the final performance of the topline DDLPO model–this im-
plies that PreFeRMAB does not leverage these features for
an unfair reward advantage.

Synthetic Experiment N=21,B=7.0 N=48,B=16.0 N=96,B=32.0

DDLPO, w/o Features 4.63 ± 0.21 4.60 ± 0.18 4.35 ± 0.11

DDLPO, w/ Features 4.63 ± 0.23 4.59 ± 0.17 4.21 ± 0.11

accept ground truth transition probabilities for each arm as feature

inputs to the respective policy networks. We present results for

DDLPO with and without input features, for a fixed seed, in Table

Table 12. In this table, we observe that across synthetic experiments

for various system capacities and budgets, DDLPO’s performance

does not improve given access to features. These results suggest

that PreFeRMAB is not leveraging the input features to gain an

unfair advantage in evaluation.

B.4 Different values of 𝑁, 𝐵, 𝑆
We present results on a wider range of problem settings, specifi-

cally different number of arms 𝑁 , different budget 𝐵, and (for SIS

Epidemic Modeling only), different number of possible states 𝑆 .

Table 13: Results on Synthetic with discrete states.We present
final reward divided by the number of arms, averaged over
50 trials. For each system capacity 𝑁 , we pretrain a model.
The DDLPO (topline) does not accomodate different opt-in
rates and can only be used on 100% opt-in.

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity 𝑁 = 96. Budget 𝐵 = 32.

No Action 3.22±0.12 3.24±0.12 3.19±0.11 3.18±0.11 3.18±0.11

Random Action 3.62±0.13 3.66±0.13 3.58±0.13 3.60±0.12 3.60±0.12

PreFeRMAB 4.63±0.12 4.71±0.12 4.53±0.13 4.47±0.12 4.61±0.10

DDLPO (topline) n/a n/a n/a n/a 4.58±0.13

System capacity 𝑁 = 48. Budget 𝐵 = 16.

No Action 3.19±0.11 3.24±0.13 3.18±0.11 3.23±0.11 3.17±0.10

Random Action 3.61±0.17 3.70±0.21 3.56±0.18 3.67±0.17 3.58±0.16

PreFeRMAB 4.77±0.18 4.74±0.16 4.62±0.19 4.94±0.14 4.78±0.14

DDLPO (topline) n/a n/a n/a n/a 4.76±0.14

System capacity 𝑁 = 21. Budget 𝐵 = 7.

No Action 3.44±0.21 3.43±0.19 3.41±0.20 3.38±0.17 3.22±0.16

Random Action 3.82±0.32 3.79±0.33 3.77±0.31 3.76±0.28 3.58±0.27

PreFeRMAB 4.20±0.27 4.46±0.23 4.48±0.23 4.74±0.26 4.56±0.23

DDLPO (topline) n/a n/a n/a n/a 4.81±0.14

Synthetic Evaluation: We first evaluate the performance of

PreFeRMAB in the discrete state synthetic environment setting

described above. Table 13 illustrates these results. In this synthetic

setting, we find that PreFeRMAB is able to consistently outperform

Random Action and No Action baselines, and achieve performance

comparable to the topline DDLPO approach. Critically, PreFeRMAB

achieves good reward outcomes across changing system capacity

𝑁 , budgets 𝐵, as well as different opt-in rates. Additionally, we

find that PreFeRMAB achieves near-topline results from zero-shot
learning in the synthetic setting, compared to the topline DDLPO

approach which is trained and evaluated on a fixed set of arm

transition dynamics for 100 epochs (we take the best performance

of DDLPO across the 100 epochs).

Table 14: Results on SIS Epidemic Model with discrete states.
We present final reward divided by the number of arms, aver-
aged over 50 trials. System capacity 𝑁 = 20 and budget 𝐵 = 16.
For each number of possible states per arm 𝑆 , we pretrain a
model. The DDLPO (topline) does not accomodate different
opt-in rates and can only be used on 100% opt-in.

Number of arms
System capacity 80% 85% 90% 95% 100%

Number of possible states per arm 𝑆 = 150.

No Action 5.33±0.16 5.30±0.15 5.31±0.14 5.29±0.13 5.28±0.13

Random Action 7.03±0.17 7.13±0.16 7.02±0.14 7.11±0.13 7.06±0.13

PreFeRMAB 8.35±0.12 8.38±0.11 8.26±0.11 8.10±0.11 8.00±0.10

DDLPO (topline) n/a n/a n/a n/a 8.09±0.11

Number of possible states per arm 𝑆 = 100.

No Action 5.28±0.15 5.20±0.13 5.30±0.15 5.25±0.14 5.27±0.15

Random Action 6.95±0.19 7.01±0.16 7.11±0.16 7.06±0.15 7.07±0.15

PreFeRMAB 7.88±0.20 7.91±0.19 7.99±0.18 8.01±0.17 8.02±0.16

DDLPO (topline) n/a n/a n/a n/a 7.99±0.08

Number of possible states per arm 𝑆 = 50.

No Action 5.39±0.15 5.47±0.15 5.42±0.13 5.44±0.12 5.46±0.12

Random Action 7.29±0.17 7.33±0.17 7.26±0.14 7.38±0.15 7.33±0.12

PreFeRMAB 8.51±0.08 8.37±0.11 8.24±0.07 8.10±0.10 7.93±0.09

DDLPO (topline) n/a n/a n/a n/a 8.04±0.08

Table 15: Results on ARMMAN with discrete states. We
present final reward divided by the number of arms, averaged
over 50 trials. For each pair of (𝑁, 𝐵), we pretrain a model.
The DDLPO (topline) does not accomodate different opt-in
rates and can only be used on 100% opt-in.

Number of arms
System capacity 80% 85% 90% 95% 100%

System capacity 𝑁 = 25. Budget 𝐵 = 7.

No Action 2.12±0.26 2.30±0.29 2.29±0.27 2.19±0.23 2.26±0.25

Random Action 2.86±0.32 3.27±0.40 3.01±0.30 3.09±0.35 2.96±0.31

PreFeRMAB 5.06±0.34 5.26±0.33 4.68±0.33 4.75±0.35 4.61±0.27

DDLPO (topline) n/a n/a n/a n/a 4.68±0.09

System capacity 𝑁 = 25. Budget 𝐵 = 5.

No Action 2.14±0.23 2.29±0.26 2.24±0.28 2.36±0.24 2.19±0.23

Random Action 2.68±0.31 2.95±0.36 2.75±0.32 2.92±0.26 2.69±0.21

PreFeRMAB 4.10±0.32 4.45±0.40 4.39±0.33 4.48±0.34 3.95±0.34

DDLPO (topline) n/a n/a n/a n/a 4.29±0.25

System capacity 𝑁 = 50. Budget 𝐵 = 10.

No Action 2.27±0.24 2.31±0.17 2.19±0.22 2.21±0.21 2.27±0.23

Random Action 2.82±0.26 2.91±0.22 2.72±0.23 2.69±0.18 2.77±0.23

PreFeRMAB 4.21±0.30 3.98±0.28 3.85±0.28 3.68±0.28 3.62±0.26

DDLPO (topline) n/a n/a n/a n/a 4.08±0.26

SIS Evaluation: Next, we evaluate the performance of PreFeR-

MAB in the discrete-state SIS modelling setting. Table 14 illustrates

these results. We evaluate PreFeRMAB for 𝑁 = 20, 𝐵 = 16 on three

different number of possible states per arm 𝑆 = 50, 100, 150, rep-

resenting the maximum population of a region in the SIS setting.



The results shown demonstrate that PreFeRMAB performs well in

zero-shot learning in settings that model real-world planning prob-

lems, especially with larger state spaces and with multiple actions.

We again find that PreFeRMAB achieves results comparable to the

DDLPO topline with zero-shot testing, compared to DDLPO trained

and evaluated on the same constant set of arms.

ARMMAN Evaluation:We next evaluate the performance of

PreFeRMAB in the discrete state ARMMAN modeling setting. Ta-

ble 15 illustrates these results. In these experiments, we show per-

formance for 𝑆 = 3 across 3 training configurations ((𝑁 = 25, 𝐵 =

5), (𝑁 = 25, 𝐵 = 7), (𝑁 = 50, 𝐵 = 10)) for 5 test-time opt-in rates.

We observe that our approach again performs consistently well in a

more challenging setting that models real-world planning problems

across different system capacities, budgets, and opt-in rates. Specif-

ically, we validate that PreFeRMAB can achieve higher average

rewards for increased budgets given a fixed system capacity, which

is expected as reward potential increases with higher budgets. Ad-

ditionally, we see that PreFeRMAB again achieves zero-shot results
comparable to the DDLPO topline reward, reaching ∼ 90% of the

topline reward in zero-shot evaluation.

C MULTI-ARM GENERALIZATION
In the main paper (Table 1), we presented results on Synthetic with

𝑁 = 21, 𝐵 = 7, demonstrating the benefit of multi-arm general-

ization. The results are obtained when the Wasserstein distance

between training and testing distribution is 0.05 (see Sec A.4 for

how we compute the Wasserstein distance). We provide additional

results to further showcase the benefits of multi-arm generalization.

Specifically, in Table 16, we present results for 𝑁 = 12, 𝐵 = 3.

Table 16: Multi-arm generalization results on Synthetic (opt-
in 100%). With the same total amount of data, PreFeRMAB
achieves stronger performance when pretrained on more
unique arms.

System capacity 𝑁 = 12. Budget 𝐵 = 3.
# Unique arms 48 39 30 21 12

No Action 3.11±0.31 3.11±0.31 3.11±0.31 3.11±0.31 3.11±0.31

Random Action 3.45±0.31 3.45±0.31 3.45±0.31 3.45±0.31 3.45±0.31

PreFeRMAB 4.35±0.28 4.28±0.29 4.31±0.27 4.04±0.32 3.60±0.30

D PROOF OF MULTI-ARM GENERALIZATION
In this section, we will shorten 𝑛epochs to 𝑛 for the sake of clarity.

In this section, we let 𝐶sys to denote a constant which depends on

the parameters of the MDP such as budget per arm 𝐵/𝑁 , cost 𝑐 𝑗 ,

discount factor 𝛽 , 𝜆max, 𝑅max, 𝐷 , 𝑑 and 𝐿. It can denote a different

constant in every appearance. We list the assumptions made in the

statement of the proposition below for the sake of clarity.

Assumption 1. Suppose the learning algorithm learns neural net-
work weights ˆ𝜃 , whose policy is optimal for each (𝜇𝑖 , 𝜆) for 𝑖 =

1, 2, . . . , 𝑛 and 𝜆 ∈ [0, 𝜆max]. That is, it learns the optimal policy
for every sample in the training data.

Assumption 2. There exists a choice of weights 𝜃∗ ∈ Θ which
gives the optimal policy for every set of 𝑁 features (𝜇) drawn as

the empirical distribution of i.i.d. samples from 𝜇∗ and for every
𝜆 ∈ [0, 𝜆max]

Assumption 3. Θ = B2 (𝐷,R𝑑 ), the ℓ2 ball of radius 𝐷 in R𝑑 . We
assume that

|𝑉 (s, 𝜃1, 𝜆, 𝜇) −𝑉 (s, 𝜃2, 𝜆, 𝜇) | ≤ 𝐿∥𝜃1 − 𝜃2∥

|𝑉 (s, 𝜃, 𝜆1, 𝜇) −𝑉 (s, 𝜃, 𝜆2, 𝜇) | ≤ 𝐿 |𝜆1 − 𝜆2 |

Define the population average value function by 𝑉 (𝑠, 𝜃 ) =

E𝜇 inf𝜆∈[0,𝜆max ] 𝑉 (s, 𝜃, 𝜆, 𝜇) and the sample average value function

by 𝑉 (𝑠, 𝜃 ) = 1

𝑛

∑𝑛
𝑗=1

inf𝜆∈[0,𝜆max ] 𝑉 (s, 𝜃, 𝜆, 𝜇)
Now, consider:

𝑉 (𝑠, ˆ𝜃 ) −𝑉 (𝑠, 𝜃∗) = 𝑉 (s, ˆ𝜃 ) −𝑉 (s, ˆ𝜃 ) +𝑉 (s, ˆ𝜃 ) −𝑉 (s, 𝜃∗)
+𝑉 (s, 𝜃∗) −𝑉 (s, 𝜃∗)

= 𝑉 (s, ˆ𝜃 ) −𝑉 (s, ˆ𝜃 ) +𝑉 (s, 𝜃∗) −𝑉 (s, 𝜃∗)
≥ −2 sup

𝜃 ∈Θ
|𝑉 (s, 𝜃 ) −𝑉 (s, 𝜃 ) | (4)

The first step follows by adding and subtracting the same term.

In the second step, we have used the fact that Assumptions 1 and 2

imply that 𝑉 (s, ˆ𝜃 ) = 𝑉 (s, 𝜃∗). In the third step, we have replaced

the discrepancy between the sample averate and the population

average at specific points
ˆ𝜃, 𝜃∗ with the uniform bound over the

parameter set Θ.
We use the Rademacher complexity bounds to bound this term.

By [52, Lemma 26.2], we show the following:

Let 𝑆 denote the random training sample (𝜇1, . . . , 𝜇𝑛) and 𝑃0

denote the uniform distribution Unif ({−1, 1}𝑛). Then, for some

numerical constant 𝐶 , we have:

E𝑆 sup

𝜃 ∈Θ
|𝑉 (s, 𝜃 ) −𝑉 (s, 𝜃 ) | ≤ 𝐶E𝑆R(Θ ◦ 𝑆)

Where, R(Θ ◦ 𝑆) is the Rademacher complexity:

R(Θ ◦ 𝑆) :=

1

𝑛
E𝜎∼𝑃0

sup

𝜃 ∈Θ

𝑛∑︁
𝑖=1

𝜎𝑖 [inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝜇 inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇)]

Thus, to demonstrate the result, it is sufficient to show that:

R(Θ ◦ 𝑆) ≤
𝐶syspolylog(𝑁𝑛)√

𝑛𝑁
(5)

We will dedicate the rest of this section to demonstrate Equa-

tion (5). First we will state a useful Lemma which follows from [59,

Lemma 1.2.1]

Lemma 1. Suppose a positive random variable 𝑋 satisfies: P(𝑋 >

𝑡) ≤ 𝐴 exp(− 𝑡2

2𝐵
) for some 𝐵 > 0, 𝐴 > 𝑒 and for every 𝑡 ≥ 0 then for

some numerical constant 𝐶 , we have:

E[𝑋 ] ≤ 𝐶
√︁
𝐵 log𝐴



Proof. From [59, Lemma 1.2.1], we have: E𝑋 =
∫ ∞
0
P(𝑋 > 𝑡)𝑑𝑡 .

Thus, we conclude:

E𝑋 ≤
∫ ∞

0

min(1, 𝐴 exp(− 𝑡
2

2𝐵
))𝑑𝑡

=
√︁

2𝐵 log𝐴 +
∫ ∞
√

2𝐵 log𝐴

𝐴 exp(− 𝑡
2

2𝐵
)𝑑𝑡

=
√︁

2𝐵 log𝐴 +
∫ ∞

0

𝐴 exp(− (𝑡+
√

2𝐵 log𝐴)2
2𝐵

)𝑑𝑡

≤
√︁

2𝐵 log𝐴 +
∫ ∞

0

exp(− 𝑡2

2𝐵
)𝑑𝑡

≤
√︁

2𝐵 log𝐴 +
√

2𝜋𝐵 (6)

In the fourth step we have used the fact that exp(−(𝑎 + 𝑏)2) ≤
exp(−𝑎2 − 𝑏2) whenever 𝑎, 𝑏 > 0. □

Define

𝑣𝑖 (𝜃 ) := [inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝜇 inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇)] .

We have the following lemma controlling how large 𝑣𝑖 is for any

given 𝜃 .

Lemma 2. For any 𝛿 > 0, with probability at-least 1 − 𝛿 ,

sup

𝑖

|𝑣𝑖 (𝜃 ) | ≤

√︄
𝐶sys log( 𝑁𝑛

𝛿
)

𝑁

Where 𝐶sys depends on the system parameters.

Proof. First, we note that:

| inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝜇 inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇) |

≤ E𝜇 | inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − inf

𝜆
𝑉 (s, 𝜃, 𝜆, 𝜇) |

≤ E𝜇 sup

𝜆∈[0,𝜆max ]
|𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) −𝑉 (s, 𝜃, 𝜆, 𝜇) |

≤ sup

𝜆∈[0,𝜆max ]
|𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E[𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 )] |

+ E𝜇 sup

𝜆∈[0,𝜆max ]
|𝑉 (s, 𝜃, 𝜆, 𝜇) − E[𝑉 (s, 𝜃, 𝜆, 𝜇)] | (7)

In the last step, we have used the fact that 𝜇 and 𝜇𝑖 are identically dis-

tributed and hence E[𝑉 (s, 𝜃, 𝜆, 𝜇)] = E[𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 )]. Note that by
definition, the value function 𝑉 (𝑠, 𝜃, 𝜆, 𝜇𝑖 ) = 1

𝑁

∑𝑁
𝑗=1

𝑉 (𝑠 𝑗 , 𝜃, 𝜆, z𝑗 ).
Thus, it is clear that |𝑉 (𝑠, 𝜃, 𝜆, 𝜇𝑖 ) | ≤ 𝐴 1+𝜆max

(1−𝛽 ) =: 𝑉max where 𝐴 is

a constant which depends on the cost parameters 𝑐 𝑗 ,
𝐵
𝑁

and the

maximum reward. Take 𝜇𝑖 := (z(𝑖 )
1
, . . . , z(𝑖 )

𝑁
) and 𝜇 := (z1, . . . , z𝑁 ).

Thus, for a given 𝜆, we have: 𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) has
zero mean and

𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 )

=
1

𝑁

𝑁∑︁
𝑗=1

[𝑉 (𝑠 𝑗 , 𝜃, 𝜆, z(𝑖 )𝑗 ) − E𝑉 (𝑠 𝑗 , 𝜃, 𝜆, z
(𝑖 )
𝑗
)] (8)

It is an average of 𝑁 i.i.d. zero mean random variables, bounded

almost surely by 2𝑉max. Therefore, using the Azuma-Hoeffding

inequality ([59]), we have:

P ( |𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) | > 𝑡) ≤ 𝐶 exp(−𝑐1𝑁𝑡2

𝑉 2

max

)

Only in this proof, let |𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) − E𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) | =: 𝐻 (𝜆) for
the sake of clarity. Let 𝐵 ⊆ [0, 𝜆max] be any finite subset. Then, by

union bound, we have:

P

(
sup

𝜆∈𝐵
𝐻 (𝜆) > 𝑡

)
≤ 𝐶 |𝐵 | exp(−𝑐1𝑁𝑡2

𝑉 2

max

) (9)

Suppose 𝐵 is an 𝜖-net for the set [0, 𝜆max] for some 𝜖 > 0. This

can be achieved with |𝐵 | = 𝜆max

𝜖 . Let 𝑓 : [0, 𝜆] → 𝐵 map 𝜆 to the

closest element in 𝐵

sup

𝜆∈[0,𝜆max ]
𝐻 (𝜆) = sup

𝜆∈[0,𝜆max ]
𝐻 (𝑓 (𝜆)) + 𝐻 (𝜆) − 𝐻 (𝑓 (𝜆))

≤ sup

𝜆∈[0,𝜆max ]
𝐻 (𝑓 (𝜆)) + 2𝐿𝜖

≤ sup

𝜆∈𝐵
𝐻 (𝜆) + 2𝐿𝜖 (10)

Taking 𝜖 = 1√
𝑁
, we conclude from Equation (9) that with probability

at-least 1 − 𝛿 :

sup

𝜆∈[0,𝜆max ]
𝐻 (𝜆) ≤ 𝐶sys

√︄
log( 𝑁

𝛿
)

𝑁

The same concentration bounds hold for sup𝜆 |𝑉 (s, 𝜃, 𝜆, 𝜇) −
E𝑉 (s, 𝜃, 𝜆, 𝜇) | and integrating the tails (Lemma 1), we bound obtain

the bound:

sup

𝜆∈[0,𝜆max ]
|𝑉 (s, 𝜃, 𝜆, 𝜇) − E𝑉 (s, 𝜃, 𝜆, 𝜇) | ≤ 𝐶sys

√︂
log𝑁

𝑁

Applying a union bound over 𝑖 = 1, . . . , 𝑛, conclude the result.

□

We state the following folklore result regarding concentration

of i.i.d. Rademacher random variables.

Lemma 3. Given constants 𝑎1, . . . , 𝑎𝑛 ∈ R, and 𝜎1, . . . , 𝜎𝑛 i.i.d
Rademacher random variables, then for any 𝛿 > 0, we have with
probability at-least 1 − 𝛿 :

𝑛∑︁
𝑖=1

𝜎𝑖𝑎𝑖 ≤ 𝐶
√︄∑︁

𝑖

𝑎2

𝑖

√︃
log( 1

𝛿
)

Where 𝐶 is a numerical constant

We are now ready to prove Equation (5) and hence complete the

proof of Proposition 1. Given a data set 𝜇1, . . . , 𝜇𝑛 and 𝜃 ∈ Θ, we let
𝑣𝑖 (𝜃 ) := [inf𝜆 𝑉 (s, 𝜃, 𝜆, 𝜇𝑖 ) −E𝜇 inf𝜆 𝑉 (s, 𝜃, 𝜆, 𝜇)]. Given a finite set

Θ̂ := {𝜃1, . . . , 𝜃𝐻 } ⊆ Θ, from Lemma 2, we have with probability

1 − 𝛿 ,

sup

𝜃 ∈Θ̂
sup

𝑖

|𝑣𝑖 (𝜃 ) | ≤

√√
𝐶sys log( 𝑛𝑁 |Θ̂ |

𝛿
)

𝑁
=: 𝑅(𝛿)

Therefore, with probability at-least 1 − 𝛿 over the randomness

in 𝜇1, . . . , 𝜇𝑛 , we have:



P

(
sup

𝜃 ∈Θ̂

𝑛∑︁
𝑖=1

𝜎𝑖𝑣𝑖 (𝜃 ) > 𝑡
��𝜇1, . . . , 𝜇𝑛

)
≤ 𝐶1 |Θ̂| exp

(
− 𝐶2𝑡

2

𝑛𝑅2 (𝛿)

)
(11)

We pick Θ̂ to be an 𝜖 net over Θ. By [59, Corollary 4.2.13], we

can take |Θ̂| ≤ ( 3𝐷𝜖 )
𝑑
. Let 𝑓 : Θ → Θ̂ be the map to its nearest

element in Θ̂. Now, we have:

sup

𝜃 ∈Θ

∑︁
𝑖

𝑣𝑖 (𝜃 )𝜎𝑖 = sup

𝜃 ∈Θ

∑︁
𝑖

𝑣𝑖 (𝑓 (𝜃 ))𝜎𝑖 + [𝑣𝑖 (𝜃 ) − 𝑣𝑖 (𝑓 (𝜃 ))]𝜎𝑖

≤ 2𝑛𝜖𝐿 + sup

𝜃 ∈Θ̂

∑︁
𝑖

𝑣𝑖 ( ˆ𝜃 )𝜎𝑖

Combining this with Equation (11), we conclude that with 1 − 𝛿
over the randomness in 𝜇1, . . . , 𝜇𝑛 , we have:

P

(
sup

𝜃 ∈Θ

𝑛∑︁
𝑖=1

𝜎𝑖𝑣𝑖 (𝜃 ) > 𝑡 + 2𝑛𝜖𝐿

����𝜇1, . . . , 𝜇𝑛

)
≤ 𝐶1 |Θ̂| exp

(
− 𝐶2𝑡

2

𝑛𝑅2 (𝛿)

)
(12)

Taking 𝜖 = 1

𝑛
3

2

√
𝑁

and integrating the tails (Lemma 1), we con-

clude that with probability at-least 1 − 𝛿 (with respect to the ran-

domness in 𝜇1, . . . , 𝜇𝑁 ).

E[sup

𝜃 ∈Θ

𝑛∑︁
𝑖=1

𝜎𝑖𝑣𝑖 (𝜃 ) |𝜇1, . . . , 𝜇𝑛] ≤ 𝐶sys
𝑅(𝛿)
√
𝑛

polylog(𝑁𝑛)

Define the random variable

𝑋 := E[sup

𝜃 ∈Θ

𝑛∑︁
𝑖=1

𝜎𝑖𝑣𝑖 (𝜃 ) |𝜇1, . . . , 𝜇𝑛]

Using the definition of 𝑅(𝛿), we have:

P(𝑋 > 𝑡) ≤ 𝐶1 exp(− 𝑡2𝑛𝑁

𝐶syspolylog(𝑁𝑛)
) .

We then apply Lemma 1 to the equation above to bound E𝑋 and

conclude Equation (5).

E PROOF FOR 𝜆-NETWORK UPDATE RULE
AND CONVERGENCE

Proof of Proposition 2. We first consider a simple setting,

where the opt-in and opt-out decisions of arms are fixed before

training. Taking the derivative of the objective (Eq 2) with respect

to 𝜆, we obtain:

𝐵

1 − 𝛽 −
𝑁∑︁
𝑖=1

E


∑︁

𝑡 ∈[𝐻 ]
arm 𝑖 opts-in at 𝑡

𝛽𝑡𝑐𝑖,𝑡 +
∑︁

𝑡 ∈[𝐻 ]
arm 𝑖 opts-out at 𝑡

𝛽𝑡𝑐0,𝑡

 .

Now consider the general case that the opt-in and opt-out decisions

are updated at each round during the training. We have

Λ𝑡 = Λ𝑡−1 − 𝛼
(
𝐵

1 − 𝛽

)
+ 𝛼

(
𝑁∑︁
𝑖=1

E

[
𝐻∑︁
𝑡=0

I{𝜉𝑖,𝑡 = 1}𝛽𝑡𝑐𝑖,𝑡 + I{𝜉𝑖,𝑡 = 0}𝛽𝑡𝑐0,𝑡

])
,

where the expectation is over the random variables 𝜉𝑖,𝑡 and the

action chosen by the optimal policy. Rearranging and simplifying

the right hand side terms, we obtain the 𝜆-updating rule. □

Proof of Proposition 3. The proof largely follows the proof

of Proposition 2 in Killian et al.[30].
Since the max of piece-wise linear functions is a convex function,

Equation 2 is convex in 𝜆. Thus, it suffices to show (1) the gradient

estimated using Proposition 2 is accurate and (2) all inputs (states,

features, opt-in decisions) are seen infinitely often in the limit.

For (1), we note that training the policy network for a sufficient

number of epochs under a fixed output of the 𝜆-network ensures

that Q-value estimates are accurate. With accurate Q-functions and

corresponding optimal policies, the sampled cumulative sum of

action costs is an unbiased estimator of expected cumulative sum

of action costs. Critically, for the estimator to be unbiased, we do

not strictly enforce the budget constraint during training, as in

Killian et al.[30]. In inference, we do strictly enforce the budget

constraint. For (2), we note that during training, initial states are

uniformly sampled, and opt-in decisions are also sampled from a

fixed bernoulli distribution.For arms that newly opt-in, the features

are uniformly sampled. Thus, both (1) and (2) are achieved. □
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