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ABSTRACT
Restless multi-armed bandits (RMABs) are widely used to optimize

the allocation of limited resources in sequential decision-making

settings, particularly in public health systems. However, the as-

sumption of a fixed budget for each step in the planning horizon

in classic RMABs may not be appropriate for realistic real-world

planning when resources are not necessarily limited at each step or

when certain critical steps would require a larger use of resources

than other steps. To address this issue, this paper proposes the use

of Restless multi-armed bandits with flexible budgets (F-RMABs)

that allows surplus resources in one round to be distributed to

an earlier or later round, leading to more effective and efficient re-

source allocation. Additionally, the paper highlights the importance

of considering critical times, such as peaks in disease contagion,

in public health settings where interventions may become more

critical and necessary, and delaying or early use of resources can

be beneficial. Overall, this paper emphasizes the significance of

incorporating criticality in the deployment of RMABs via F-RMABs

for optimal resource allocation in public health systems.
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1 INTRODUCTION
Restless multi-armed bandits (RMABs) have gained increasing at-

tention as a model for efficient resource allocation in public health

settings, with examples including treatment adherence for tubercu-

losis [4], maternal health and child care [1], and general adherence

dynamics prevalent in many public health intervention problems

[3]. However, the classic RMAB approach assumes fixed resource

constraints at each step of the planning horizon, limiting its ef-

fectiveness in real-world settings where resources are not strictly

constrained at each round but over multiple time steps, and certain

interventions may need prioritization over others.

To address this issue, we propose the use of flexible budget

restless multi-armed bandits (F-RMABs) [6] in public health settings.

F-RMABs allow for the total resources to be used to be budgeted

over a flexible time window, enabling public health practitioners to

adjust their policies based on changing resource availability and
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prioritize critical interventions. This approach can lead to more

efficient resource allocation and improved health outcomes for the

population being served.

We further highlight two specific situations where the use of

flexible resources can lead to better resource allocation policies

in the public health setting: (i) responding to highly transmissible

diseases with a wave behavior and (ii) designing health mandates

that, while responding to disease outbreaks, reduce social tensions

among individuals. By taking a sequential decision-making ap-

proach and adapting to changing circumstances, F-RMABs can help

optimize resource allocation strategies and reduce the burden of

health mandates.

In this paper, we present F-RMABs as a better alternative for

sequential planning in public health settings. Unlike classic RMABs,

which have a fixed per-round budget constraint, F-RMABs allow

for a flexible budget over a time window of length 𝐹 within the

horizon 𝐻 , where the total cost of all actions over that flexible

window must be less than or equal to 𝐹𝐵 to maintain the per-round

budget constraint on average. With the flexibility of F-RMABs,

public health practitioners can make better resource allocation

decisions and ultimately improve health outcomes for their patients.

In this paper, we propose F-RMABs as a superior approach for

sequential resource allocation in public health settings. We begin by

introducing the F-RMAB model and then present an algorithm to

compute effective F-RMAB policies. To demonstrate the advantages

of F-RMABs, we conduct experiments on synthetic domains that

are motivated by real-world public health scenarios. Our results

indicate that policies with budget flexibility achieve a performance

improvement of up to 24% and 11% compared to fixed budget poli-

cies on our synthetic domains. Overall, our findings suggest that

the use of F-RMABs can significantly enhance resource allocation

strategies in public health settings, leading to better health out-

comes for the populations being served.

2 FLEXIBLE BUDGET RMABS
Here, we define restless multi-armed bandits with flexible budget
(F-RMABs) and provide algorithms to solve for reward maximizing

policies in this setting. In section 2.1 we give a background on

classic RMABs and in section 2.2 we define F-RMABs as a general

class of RMABs with flexible per-round budget.

2.1 Background: Restless Multi-Armed Bandits
An RMAB instance consists of 𝑁 independent Markov decision

processes (MDPs), each corresponding to an arm of the instance [5].

Each MDP is defined by the tuple {S,A, 𝑅,P}. S denotes the state

space, A is the set of possible actions, 𝑅 is the reward function

𝑅 : S × A × S → R, and P : S × A × S → [0, 1] represents
the transition function. We use 𝑃𝑎

𝑠,𝑠′ to denote the probability of

transitioning from state 𝑠 to state 𝑠′ under the action 𝑎.



We let 𝑠𝑡 = [𝑠𝑡
1
, 𝑠𝑡

2
. . . 𝑠𝑡

𝑁
] denote the vector of states of the 𝑁

MDPs at time step 𝑡 . A policy is a mapping 𝜋𝑡 : S𝑁 → A𝑁
that

informs the action to take at a given state, at time step 𝑡 . We consider

the more general multi-action case in which |A| ≥ 2 and define an

action-cost matrix 𝒄 of size 𝑁 × |A|, i.e., 𝑐𝑛𝑗 is the cost of taking
action 𝑗 ∈ A on arm 𝑛. Let 1𝜋𝑡 (𝑠𝑡 ) be the one-hot encoder of size
𝑁 × |A|, where each row 𝑛 indicates which action to perform on

arm𝑛 at time step 𝑡 . The planner’s goal is to find rewardmaximizing

policies {𝜋𝑡 }𝐻
𝑡=1

under the budget constraint 1𝜋𝑡 (𝑠𝑡 ) · 𝒄 ≤ 𝐵 for

each 𝑡 ∈ [𝐻 ]. Here 𝐻 is the horizon length and · is the Frobenius
inner product.

The total reward accrued can be measured using discounted,

average, or total reward criteria in the finite- or infinite-horizon

settings; we consider the total reward criterion in the finite-horizon

setting, which enables the clearest analysis of our method. The

expected total reward from initial state 𝑠0
is defined as 𝑉 1

𝜋 (𝑠0) =
E
[∑𝐻

𝑡=1

∑𝑁
𝑛=1

𝑅(𝑠𝑡−1

𝑛 , [𝜋𝑡 (𝑠𝑡−1)]𝑛, 𝑠𝑡𝑛)
]
where the next state is drawn

according to 𝑠𝑡𝑛 ∼ 𝑃 [𝜋
𝑡 (𝑠𝑡−1 ) ]𝑛

𝑠𝑡−1

𝑛 ,𝑠𝑡𝑛
. The planner’s goal is to find policies

𝜋 = {𝜋𝑡 }𝐻
𝑡=1

that maximize the total reward.

2.2 Definition
In F-RMABs, we define the MDP followed by each arm using the

tuple {S,A, 𝑅,P} just as in the classic RMAB setting. We now

consider a flexible-budget time window of length 𝐹 where 𝐹 ≤ 𝐻 .

Our goal is to find optimal policies {𝜋𝑡 }𝐻
𝑡=1

such that

∑𝐹
𝑡=1

(1𝜋𝑡 (𝑠𝑡 ) ·
𝒄) ≤ 𝐹𝐵 and 1𝜋𝑡 (𝑠𝑡 ) ·𝒄 ≤ 𝐵 for 𝑡 = 𝐹 +1, . . . , 𝐻 . That is, we consider

an exhaustible budget 𝐹𝐵 that is available to spend over the flexible

window 1, . . . , 𝐹 and think of 𝐵 as the one-step budget at every time

step 𝑡 after the flexible window 𝑡 = 𝐹 + 1, . . . , 𝐻 .

3 SOLVING F-RMAB POLICIES
3.1 F-RMAB as an optimization problem
Existing RMAB solution approaches require a fixed budget per

round, leading to suboptimal performance. Tomake use of flexibility,

we extend Lagrangian relation to the flexible setting and solve the

resulting min-max problem with gradient algorithms. We present

this formulation as it is presented and derived in (Rodriguez Diaz

et al., 2023).

Recall, the budget constraint for F-RMABs over the flexible win-

dow is given by:

𝐹∑︁
𝑡=1

1𝜋𝑡 (𝑠𝑡 ) · 𝒄 ≤ 𝐹𝐵, (1)

where 1𝜋𝑡 (𝑠𝑡 ) is the one-hot encoded matrix of size 𝑁 × |A|, where
each row 𝑛 indicates the action recommended by the policy 𝜋𝑡 on

arm 𝑛, at time step 𝑡 . Since this budget constraint is over multi-

ple timesteps, formulating the optimal Bellman equation requires

expanding the state space of the F-RMAB to capture the budget re-

maining after a given action is taken. However, this expansion adds

an additional layer of combinatorial complexity over that involved

in formulating the optimal Bellman equation for classic RMABs.

Moreover, it is unclear how to relax this single budget constraint,

which covers multiple timesteps, in a convenient or informative

manner.

We make the insight that Eq. 1 can be reformulated to the follow-

ing equivalent constraint structure, which introduces per-round

budget variables:

1𝜋𝑡 (𝑠𝑡 ) · 𝒄 ≤ 𝑏𝑡 ∀𝑡 ∈ {1, . . . , 𝐹 } (2)

𝐹∑︁
𝑡=1

𝑏𝑡 ≤ 𝐹𝐵 . (3)

We will show this reformulated set of constraints is much more

convenient to solve. For this constraint structure, each 𝑏𝑡 for 𝑡 ∈
{1, . . . , 𝐹 } is a variable that we must solve for in the original maxi-

mization problem. The key idea is that having a constraint in each

round of the problemwill allow us to follow a per-round Lagrangian

relaxation, enabling us to convert the problem into a more tractable

form.

Thus for the finite-horizon problem with total time horizon of

length𝐻 and flexible timewindow of length 𝐹 , the F-RMAB problem

can be formulated as the following optimization problem:

max

𝜋1,...,𝜋𝐻

𝑏1,...,𝑏𝐹

E

[
𝐻∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝑅(𝑠𝑡−1

𝑛 , [𝜋𝑡 (𝑠𝑡−1)]𝑛, 𝑠𝑡𝑛)
]

(4)

s.t. 1𝜋𝑡 (𝑠𝑡 ) · 𝒄 ≤ 𝑏𝑡 , ∀𝑡 ∈ {1, . . . , 𝐹 } (5)

1𝜋𝑡 (𝑠𝑡 ) · 𝒄 ≤ 𝐵, ∀𝑡 ∈ {𝐹 + 1, . . . , 𝐻 } (6)

𝐹∑︁
𝑡=1

𝑏𝑡 ≤ 𝐹𝐵 (7)

Since the optimal policies for all arms are still coupled by budget

constraints, this problem is still at least as hard as standard RMABs.

However, we carry out a Lagrangian relaxation that gives a new

problem that upper bounds Eq. 4, but is in a far more tractable form,

as we show in Theorem 3.1. The key benefit of Theorem 3.1 is that, if

𝐺 is convex, there are efficient algorithms for solving optimization

problems with this structure. See [6] for detailed proof.

Theorem 3.1. The Lagrangian relaxation of Eq. 4 gives a new
first-order primal-dual optimization problem which upper bounds
Eq. 4 and has structure:

min

𝑥∈𝑋
max

𝑦∈𝑌
⟨𝐾𝑥,𝑦⟩ +𝐺 (𝑥) − 𝐻∗ (𝑦), (8)

where 𝑋 and 𝑌 are finite-dimensional vector spaces equipped with
inner product ⟨·, ·⟩. 𝐾 : 𝑋 → 𝑌 is a linear operator and 𝐺 : 𝑋 →
R ∪ {∞} and 𝐻∗

: 𝑌 → R ∪ {∞} are convex functions.
Now that we have shown the underlying structure of our prob-

lem, in the next section we describe an approach for solving the

Lagrangian sub-problem optimally, and using that to derive good

policies for the F-RMAB.

3.2 Solving with a gradient algorithm
We now present an algorithm for solving F-RMABs. The key idea

is that, for a given state in a given round, the solution will contain

information about how budget within a flexible window would

be best allocated, and what actions are best to take. We use that

information to actually take actions each round in the environment.

The optimization problem fromTheorem 3.1 is solved by building

from the proximal optimization method of Chambolle and Pock [2],

which is desirable for its convergence properties on concave-convex



min-max optimization problems. The key challenge in implement-

ing their approach is in efficiently computing the proximal steps.

Note first that the proximal operator (or proximal mapping) of a

convex function 𝐹 is

prox𝜎𝐹 (𝒙) = arg min

𝒖

(
𝐹 (𝒖) + 1

2𝜎
| |𝒖 − 𝒙 | |2

2

)
.

Following the notation in Chambolle and Pock [2], prox𝜎𝐹 (𝒙) =
(𝑰 +𝜎𝜕𝐹 )−1

. Then, the proximal operator of𝐻★(𝒃) is prox𝜎
𝐻★ (𝒙) =

arg min𝒖

(
1

2𝜎 | |𝒖 − 𝒙 | |2
2

)
= 𝒙 . Hence, the proximal operator of the

zero function 𝐻★
is the identity. The proximal operator of 𝐺 does

not have any analytical form. However, it is a piecewise-liear func-

tion. Since the proximal operator of linear functions is simply

𝒙 − 𝜎∇𝐹 (𝒙), a good approximation of prox𝜎𝐺 (𝒙) is 𝑥 − 𝜎∇𝐺 (𝑥).
Though an approximation, as we show next, computing ∇𝐺 is con-

venient, and performs well in practice.

Proposition 3.2. The gradient of𝐺 at (𝝀, 𝜇) is given by∇𝐺 ((𝝀, 𝜇)) =
[𝐷1, 𝐷2, . . . , 𝐷𝐹 , 𝐷𝐹+1+𝐵, . . . , 𝐷𝐻+𝐵, 𝐹𝐵] where𝐷𝑡 = E[∑𝑛∈[𝑁 ] −𝑐𝑡𝑛]
is the expected sum of costs over all arms in step 𝑡 under the optimal
policy for 𝝀.

The main challenge then is in computing𝐷𝑡
which has no conve-

nient closed form. However, as long as we can compute the optimal

policy 𝜋∗ (𝝀) for 𝝀, we can get unbiased samples of each 𝐷𝑡
via

Monte Carlo simulation of 𝜋∗ (𝝀).
Combining each of these steps, we have a complete algorithm

for solving FRAMB policies to our desired level of convergence [2].

This approach is called primal-dual stochastic gradient (PDSG) and
the pseudocode for its implementation is presented in Algorithm 1.

Algorithm 1 PDSG

Input: Flexible window 𝐹 , horizon 𝐻 , initial values

𝑏0 ∈ R𝐹 , 𝜆0 ∈ R𝐻 , 𝜇0 ∈ R, gradient steps 𝜏, 𝜎 > 0, transition

probability 𝑃 , per-round budget 𝐵, and number of gradient

samples 𝑁𝑠 for each state 𝑠

1: 𝜈0 = [𝝀0, 𝜇0]
2: while not converged do
3: 𝑏𝑛+1 = 𝑏𝑛 + 𝜎𝐾𝜈𝑛
4: 𝜈𝑛+1 = 𝜈𝑛 − 𝜏𝐾 ′𝑏𝑛+1

{𝜈𝑛+1 = [ ˆ𝝀𝑛+1, 𝜇𝑛+1]}
5: 𝜋𝑛+1 = FiniteHBellmanLP(𝑃, ˆ𝝀𝑛+1, 𝐻 ) {LP to compute

value func given 𝜆. In appendix.}

6: ∇𝐺 (𝜈𝑛+1) = SampleGrads(𝑁𝑠 , 𝜋
𝑛+1, 𝑃, 𝐻, 𝐹 )

7: 𝜈𝑛+1 = 𝜈𝑛+1 + 𝜏∇𝐺 (𝜈𝑛+1)
8: 𝜈𝑛+1 = 2𝜈𝑛+1 − 𝜈𝑛
9: end while

4 EXPERIMENTAL EVALUATION
We evaluate the algorithm presented in section 3.2 on two synthetic

domains motivated by public health situations. Our results show

these domains all benefit from per-round budget flexibility.

4.1 Synthetic domains
Dropout state. This first domain characterizes settings with po-

tential urgent interventions, such as clinical health settings in which

patients are likely to never return after dropping out of a program

Algorithm 2 SampleGrads

Input: Number of gradient samples 𝑁𝑠 , policy 𝜋 : S𝑁 → A𝑁
,

transition function 𝑃 , planning horizon 𝐻 , flexible time window 𝐹

1: for 𝑖 ∈ {1, ..., 𝑁𝑠 } do
2: 𝒙𝑖 = (𝑥1,𝑖 , . . . , 𝑥𝐻,𝑖 ) = MonteCarlo(𝜋, 𝑃 ) {Simulate 𝜋 in envi-

ronment 𝑃 , return cost at 𝑡 ∈ [𝐻 ]}
3: end for
4: 𝑫 =

1

𝑁𝑠

∑𝑁𝑠

𝑖=1
𝒙𝑖

5: return [𝑫, 𝐵𝐹 ] {∇𝐺 }
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(b) Active transition probabilities

Figure 1: Drop out state domain with three states: drop out
(𝑠 = 0), risk (1), and safe (2). Passive transition probabilities
are presented in Figure (a) and active transition probabilities
are shown in Figure (b). We take 𝑝0

0,0
∈ [0.85, 0.95], 𝑝1

0,0
= 0,

𝑝0

1,1
∈ [0.35, 0.5] and 𝑝1

1,1
= 1 in our experiments.

[1]. We consider three states: dropout (𝑠 = 0), at-risk (𝑠 = 1), and

safe (𝑠 = 2). We consider a binary action set A = {0, 1} correspond-
ing to a passive action (𝑎 = 0) and active action (𝑎 = 1). The reward
function 𝑅 : S → R is defined as 𝑅(0) = 0 and 𝑅(1) = 𝑅(2) = 1.

Once an arm reaches the dropout state, it can not transition to any

other state, i.e. 𝑃𝑎
0,0

= 1 for all 𝑎 ∈ A. Fig. 1 illustrates the remaining

active and passive transition probabilities in this domain.

In this dropout domain, interventions may be more urgent in

certain rounds depending on the combined state of all arms. For

example, if at time 𝑡 , 𝑘 arms are at risk of transitioning to a dropout

state, i.e. 𝑘 arms are in state 1 as shown in Figure 1, acting on these

𝑘 arms at 𝑡 is more urgent than acting on them at 𝑡 + 1 or other

near future steps. Thus this domain illustrates a key instance when

the F-RMAB class introduces essential flexibility.

Two-state process. The two-state process models approaches in

health intervention planning such as maternal health care [? ]. This
domain models an entity with two states, a good and a bad state,

with reward𝑅(1) = 1 for each arm in the good state and𝑅(0) = 0 for

the bad state. See Figure 2 in Appendix for a diagram of the model,



with four transition probability parameters. Transition probabilities

for each arm 𝑛 ∈ [𝑁 ] are 𝑝1

0,1
= 𝑝1

1,1
= 1, 𝑝0

0,0
∈ [0.85, 0.95] and

𝑝0

1,1
∈ [0.5, 0.85] are uniformly sampled, and 𝑝0

0,1
= 1 − 𝑝0

0,0
and

𝑝0

1,0
= 1 − 𝑝0

1,1
as shown in Fig. 2.

bad good

1 − 𝑝𝑎
1,1

1 − 𝑝𝑎
0,0

𝑝𝑎
0,0 𝑝𝑎

1,1

Figure 2: Two-state process domain with 𝑝𝑎
𝑠,𝑠′ the transition

probability from state 𝑠 to 𝑠′ after taking action 𝑎.

5 RESULTS
We test PDSG (Algorithm 1) and Compress heuristics, a heuristic

that translates F-RMABs into classic RMABs by reasoning about

consecutive steps, to solve for F-RMABs and compare them against

a classic RMAB solution algorithm with fixed per round budget on

the three domains described above. For each domain we consider a

planning horizon of length 𝐻 , an initial per round budget of 𝐵 = 1,

and vary the length of the flexible time window 𝐹 .

In Fig. 3 we see that optimal policies that allow for budget flexi-

bility attain higher reward than optimal policies restricted to a fixed

budget at every round. The Hawkins approach demonstrates the

optimal reward achieved with a fixed budget. Our PDSG algorithm

to solve for optimal policies in F-RMABs attains higher cumulative

reward than Hawkins across all settings. Notably, PDSG progres-

sively obtains higher rewards with longer flexible time windows,

demonstrating the additional planning power that can be gained

with wider windows of flexibility.

As shown in Fig. 3(a), the flexible algorithms Compress (closing)
and PDSG-200 obtain a maximum increase in reward of 21.50% and

23.56% respectively for 𝐹 = 5 compared to the reward obtained by

Hawkins. This increase in reward is obtained by designing a more

efficient allocation of resources over a planning horizon of length

𝐻 = 30. This allocation is done by mostly assigning 0 to 2 resources

at each step of the planning horizon, even for 𝐹 = 3 and 𝐹 = 5, in

Figure 3: Cumulative reward for (a) dropout state with𝐻 = 30,
𝑁 = 10, 𝐵 = 1, and (b) two-state process with 𝐻 = 6, 𝑁 =

10, 𝐵 = 1.The cumulative reward axis range in (a) starts at
the average value for a policy taking 𝐵 random actions. The
horizontal gray line in (b) denotes this same value for the
two-step process domain.

contrast to Hawkins which is restricted to use 1 resource at each

step.

As shown in Fig. 3(b) for the two-state process domain, our

method to solve for policies with flexible budget (PDSG-200) attains
an increase in reward of 6.71%, 5.66%, and 11.32% for flexible time

windows of length 𝐹 = 2, 3, 6 respectively in contrast to the per

round budget policy derived by Hawkins. We observe that RMABs

can also benefit from flexibility in settings with as few as two states,

which are relevant settings for health intervention planning, in

contrast to the other two domains considering more than two states

and having intermediate states that directly characterize waiting

steps until reaching a bad state.

6 CONCLUSION
This paper proposes the use of flexible budget restless multi-armed

bandits (F-RMABs) as a better alternative for sequential planning

in public health settings. F-RMABs allow for the total resources to

be budgeted over a flexible time window, enabling public health

practitioners to adjust their policies based on changing resource

availability and prioritize critical interventions. Our experiments on

synthetic domains that are motivated by real-world public health

scenarios demonstrated that F-RMAB policies with budget flexibil-

ity achieved a significant improvement in performance compared to

fixed budget policies. We present these results as a proof of concept

of the potential usefulness of flexible budgets in sequential resource

allocation in public health settings.

The adoption of F-RMABs can make a substantial contribution

to the field of public health, providing a powerful tool for optimiz-

ing resource allocation policies and reducing the burden of health

mandates. However, there is still much to explore in the applica-

tion of F-RMABs to real-world data, particularly in the settings of

the synthetic domains presented in this paper. Further research is

needed to assess the effectiveness of F-RMABs in a broader range

of public health settings and to evaluate their impact on health

outcomes. Overall, our findings suggest that F-RMABs can sig-

nificantly enhance resource allocation strategies in public health

settings, leading to better health outcomes for the populations being

served.
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