
Fairness in Scarce Societal Resource Allocation:
A Case Study in Homelessness Applications
Ashwin Kumar

Washington University in St. Louis
Saint Louis, MO, United States

William Yeoh
Washington University in St. Louis
Saint Louis, MO, United States

ABSTRACT
Societal resource allocation is a broadly studied field, where a lim-
ited quantity of resources is to be divided amongst a large popu-
lation, like distributing limited beds among homeless people, or
splitting food supplies between refugee camps. When group dispar-
ities exist, fairness becomes a critical issue because of the sensitive
nature of the resources. Further, such systems may require repeated
matching over time, thus making it an online problem. In this
paper, we cast online scarce societal resource allocation as a multi-
agent Markov Decision Process (MMDP) and demonstrate a simple
incentives-based approach that can be used to improve fairness
across a variety of trade-off weights. With the application domain
of allocating homelessness services, we show our method’s efficacy
on different group divisions and demonstrate competitive tradeoffs
with overall system efficiency. Further, we show how only affecting
a subset of the population can lead to better overall solutions. We
provide a general discussion and results from our experiments to
show how these methods compare against each other.
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1 INTRODUCTION
Many real-world situations demand the allocation of some restricted
resources across a group of individuals in need. From allocation
of food reserves to refugee shelters to distribution of homeless-
ness resources to people needing them, to allocating interventions
for child protection services, we are often faced with the need to
allocate interventions and resources to individuals to maximize
the benefit received to society. Allocating scarce societal resources
resources is a challenging problem due to the heterogenous needs
of individuals receiving them. It is often difficult to satisfy every
individual’s requirements to an equal extent, thus an efficient al-
location aims to maximize some notion of aggregate utility. The
utilitarian solution may also result in envy or a feeling of injustice
for some individuals in the population, and this makes the study of
fairness in these allocations important.

Prior work has looked at equitable allocation of resources across
a given population using different notions of fairness, like serving
the neediest people first, serving the most-helped first, or ensuring
that the worst-off individual’s utility is maximized. In this work,
we focus on the online setting, where resources and recipients
arrive over time and batched decisions need to be made my a cen-
tral authority. Instead of proposing a fair algorithm that optimizes
some measure of fairness to generate an allocation, we propose
an incentive based approach to allow for a continuous trade-off
between fairness and efficiency. We begin by describing a general
Multi-agent Markov Decision Process (MMDP) framework that

encapsulates general resource allocation problems. Then, using
the group fairness notion of statistical parity, we show how we
can move from an efficient allocation towards a fairer one through
using the gradient information from the chosen fairness metric. We
run experiments on a homelessness intervention allocation data-
base, where the goal is to minimize total probability of re-entry into
homelessness. Our experiments show a significant improvement
in fairness is possible with minimal increase in overall probability
of re-entry, especially when our incentives are applied only to a
subset of the population.

2 RELATEDWORK
Many real-world scenarios demand the division of resources
(tasks) between multiple individuals (agents), each of whom de-
rive different utilities for receiving them. From dividing a cake
evenly [9] to efficiently dividing network bandwidth across multi-
ple consumers [21], from allocating passengers to available taxis in
ridesharing [26] to assigning homelessness interventions [19], the
use-cases for resource allocation are diverse and far-reaching.

Efficient resource allocation has been a popular endeavour in the
economics and computational optimization research community
over the last several decades. The notion of Social Good frequently
comes up in discussions about efficient resource allocation, where
in addition to maximizing utility (the utilitarian approach), the
decision-maker is also interested in enforcing fairness in how the
resource is allocated to the agents [6, 8, 17]. There are a myriad of
criteria for fairness, each defining fairness in different ways: mini-
mizing variation among the population, maximizing the worst indi-
vidual [5, 25] and allocating resources proportional to utility [18],
being some examples. In some cases, fairness and utility can go hand
in hand, while in (most) others, there exists a trade-off between
fairness and utility. Especially with indivisible goods, a fair division
may not exist, introducing the need for approximate fairness [22].

There exists a class of subproblems within resource allocation,
where the matching (assignment of resources to agents) needs to
be done in an online manner by a central decision-maker, with
agents and/or resources able to re-enter the market over time. In
this work, we call such problems Temporal Resource Allocation
Problems (TRAPs). With uncertainty about future availability of
resources, myopic decisions in the present are suboptimal in the
long run (if they are even tractable to compute in the first place).
In such systems, statistical approaches like machine learning and
reinforcement learning are often used to evaluate “values” or ex-
pected utilities of present actions (assignments) to better guide
decision making. We refer to such estimators as Value Function
Approximators (VFAs) in this work.

Ensuring fairness in online matching is a much more compli-
cated task, as the temporal dynamics engage in a tug-of-war with



local (temporal) fairness. Further, the issue of Algorithmic Fairness
also creeps in with the use of VFAs, as their predictions may con-
tain biases inherited from the data used to train them. There is
a vast volume of work on algorithmic fairness, and it has been
gaining recent popularity, with concepts like Statistical Parity (also
called demographic parity) [12, 14], Equal Opportunity/Equalized
Odds [15] and Predictive Value [10]. This area of research was fa-
mously spurred on after the COMPAS recidivism predictor was
shown to be racially biased [3], bringing black-box algorithms used
in decision-making under heavy scrutiny.

There has been some research into online group fairness in
matching algorithms. Hosseini et al. [16] approach the task of creat-
ing an online approximate algorithm for class envy-freeness. How-
ever, they ignores the presence of utility estimators, and instead
tackle fairness in a zero-one setting, where agents either want a
resource or do not. Esmaeili et al. [13] use both individual and
group Rawlsian fairness criteria to improve two-sided fairness in
online bipartite matching, and provide probabilistic methods to
improve fairness. However, they consider a purely online setting
with decisions being made in rounds, one decision each round. This
differs significantly from our approach, where we batch the agents
over a time window to have a locally optimal combinatorial solu-
tion, which introduces further complications to the optimization.
Kumar et al. [20] deal with a much closer problem setting, with
multi-agent batched resource allocation in the context of rideshare
matching. We draw on the approach they presented to guide our
system design.

3 PROBLEM FORMULATION
In this section, we describe the general structure of a TRAP, rooted
in a constrained Multiagent MDP (MMDP) [7]. In an MDP, a
decision-maker interacts with a stochastic environment, choos-
ing an action 𝑎 from a set of available actions 𝐴 in the current state
𝑠 . Performing the action leads to an observed reward 𝑟 , as well as a
transition to the next state 𝑠′, determined by a transition function
𝑇 (𝑠, 𝑎, 𝑠′).

A framework for TRAPs needs to capture the repeated interac-
tions in a synchronous multi-agent setting, where the actions are
allocations of indivisible resources to agents. We define the class of
problems concretely below, drawing from Multiagent MDPs.

Definition 3.1 (TRAP). A temporal resource allocation problem
is defined by the tuple ⟨𝛼, 𝑆, {𝐴𝑖 }𝑖∈𝛼 ,𝑇 , {𝑅𝑖 }𝑖∈𝛼 , 𝛾, 𝑐⟩, where:

• 𝛼 is the set of all agents, each identified by 𝑖 ∈ {1, 2, 3, . . . , 𝑛};
• 𝑆 is the set of global states;
• 𝐴𝑖 is the set of actions for each agent 𝑖;
• 𝑇 : 𝑆 ×𝐴1 ×𝐴2 × · · · ×𝐴𝑛 × 𝑆 → [0, 1] is the joint transition
function, encoding the probability of transition
𝑇 (𝑠, 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑠′) = 𝑃 (𝑠′ |𝑠, 𝑎1, 𝑎2, . . . , 𝑎𝑛);

• 𝑅𝑖 : 𝑆 ×𝐴𝑖 → R is the reward for agent 𝑖 for a given action;
• 𝛾 is the discount factor that weighs the reward achieved in
future time steps; and

• 𝑐 : 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑛 → R𝐾 is a function that maps each
action to its resource consumption.

We include separate rewards for each agent, akin to Multi-
Objective MDPs (MOMDPs) [27]. In MOMDPs, the reward 𝑅(𝑠, 𝑎) ∈

R𝐷 is a vector, where each component is an objective to be opti-
mized. This could be interpreted as two competing objectives (like
fairness and efficiency), or as separate rewards for each agent. In a
cooperative setting, the decision-maker’s goal is to maximize total
agent rewards over time.

A policy 𝜋 : 𝑆 → A maps the global state to an allocation
A = {𝐴1 × 𝐴2 × · · · × 𝐴𝑛}, which represents the set of assigned
actions for each agent. The joint action space even for a moderate
number of agents is exponential in the size of 𝛼 , so enumerating
over all possible actions is intractable. Instead, agents actions are
often assumed to be independent [11], allowing a simplification of
the action space. In this system, each agent has its own associated
state which it observes as a subset of the global state.

However, in resource allocation problems, agents cannot be truly
separated. In this setting, an agent’s action amounts to allocating to
it a quantity of available resource. Since the overall availability of
resources may be limited, this imposes a coupling between agents
through the need to share resources. An agent’s action is limited by
the actions of other agents that require the same resource. This can
be overcome by restricting the action space to only include joint
actions that conform to the available resources. We formally include
these constraints as part of the problem formulation for TRAPs. If
𝐾 is the number of resources, each represented as 𝑗 ∈ {1, 2, . . . , 𝐾},
the resource availability is written asR ∈ R𝐾 . We thus say that each
resource 𝑗 has an availability R 𝑗 , and this information is included in
the global state. Further, each action 𝑎𝑖 has an associated resource
consumption 𝑐 (𝑎𝑖 ) ∈ R𝐾 .

For an allocation A to be valid, the following constraints must
be satisfied:∑︁
𝑎∈𝐴𝑖 ,𝑥𝑖 (𝑎) ∈{0,1}

𝑥𝑖 (𝑎) = 1, ∀𝑖 ∈ 𝛼 (Action Constraint) (1)∑︁
𝑎∈A

𝑐 (𝑎) 𝑗 ≤ R 𝑗 , ∀𝑗 ∈ {1, . . . , 𝐾} (Resource Constraint)

(2)

These constraints say each agent must be assigned exactly one
action (Eq.1), and the combined resource consumption should not
exceed the resource availability (Eq.2). Resources may be replen-
ished after consumption, but their arrival rate is stochastic. Further,
resource may be indivisible, in which case, additional integer con-
straints are added to each agent’s actions. Agents’ action sets may
be padded with a null action to always ensure a feasible allocation.

In this work, agents represent the individuals looking for re-
sources. In a scarce resource setting, number of agents is more than
the available resources, |𝛼 | ≥ 𝐾 .

3.1 Solving TRAPs Using Utility Approximation
The expected value of a policy can be written using the Bellman
equation [4]:

𝑉𝜋 (𝑠) = 𝑅(𝑠, 𝜋 (𝑠)) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋 (𝑠), 𝑠′)𝑉𝜋 (𝑠′) (3)

The optimal policy selects the action maximizing expected value.
In this case, this means selecting a combination of agent actions
that maximizes the cumulative action-value across all agents (for a
cooperative system). Combinatorial optimization is often used to



find the best assignment subject to resource constraints, using tech-
niques like linear programming or mixed-integer programming.

In many real-world scenarios with unknown transitions, infinite
state spaces or large action spaces, computing the exact value func-
tion becomes impossible. Thus, practical approaches approximate
this value function through a variety of statistical methods. Value
Function Approximators (VFAs) try to estimate utility of taking an
action, which guides the joint action selection at the current time
step. Thus, we can write the action-value for an agent-allocation
matching as follows:

𝑄 (𝑠𝑖 , 𝑎𝑖 ) = 𝑅(𝑠𝑖 , 𝑎𝑖 ) + 𝛾
∑︁
𝑠′
𝑖
∈𝑆
𝑇 (𝑠𝑖 , 𝑎, 𝑠′𝑖 )𝑉 (𝑠′𝑖 ) (4)

Given this, we can formulate the following optimization objec-
tive to maximize the cumulative action-values, where 𝑥𝑖 (𝑎) is an
indicator variable for action 𝑎 being assigned to agent 𝑖:

max
𝑥𝑖 (𝑎) ∈{0,1}

∑︁
𝑖∈𝛼

∑︁
𝑎∈𝐴𝑖

𝑥𝑖 (𝑎)𝑄 (𝑖, 𝑎) (5)

such that combining this objective with the action and resource
constraints (Eqs.1-2) gives us a mixed-integer program that we can
solve to find the optimal matching of agents to resources. This
formulation is general and seen in many resource allocation prob-
lems [2, 19, 26].

3.2 Including Fairness in TRAPs
In this work, we tackle the problem of group fairness [29]. In a broad
sense, group fairness aims to equalize some statistical measure over
partitions of the population into groups. In our exploration, we
look at groups defined both over the population of agents as well as
over the population of resources. To include fairness, we can define
a group metric 𝑧 : {1, 2, . . . , 𝑔} → R to map a group to its metric
value. This value is updated based on the actions taken, after the
transition to the successor state. Further, each agent or resource can
be mapped to a group using a function 𝐺 : 𝛼 ∪ R → {1, 2, . . . , 𝑔}.

Each allocationA has an effect of the distribution of groupmetric
values Z = {𝑧𝑖 }𝑖∈{1,2,...,𝑔} , given by the function Z. Let Z𝑡+1 =

Z(A𝜋
𝑡 ,Z𝑡 ) with policy 𝜋 , and let F (Z) be a fairness metric over

the group metrics. Our fairness objective is to minimize this fairness
metric at a time horizon 𝑡+𝑘 , F (Z𝑡+𝑘 ) bymodifying the policy 𝜋 . In
a way, we are looking to minimize quality of service differences over
groups over a time horizon, instead of improving individual-level
allocation inequity at a single time step. The rationale behind this is
that over a long time horizon, equalizing group-level treatment will
also equalize the expected individual level treatment conditional
on group membership.

4 SIMPLE INCENTIVES
In settings where the VFA is only accessible as a black box, one
of the few options to enforce fairness is to post-process the value
predictions to skew them in a fairness-aware manner. We draw
inspiration from a post-processing method presented by Kumar
et al. [20] called Simple Incentives. We describe the details of this
method in the rest of this section.

We use the idea of Statistical Parity [1, 14] as our notion of
fairness. Also called Demographic Parity, it requires that the ex-
pected value of a given metric 𝑧 over a group 𝑔 is the same as

𝑧 = E𝑔′∈𝐺 [𝑧 (𝑔′)] the expected value of that same metric over all
groups 𝑔′ ∈ 𝐺 :

𝑧 (𝑔) = 𝑧 (6)
|𝑧 − 𝑧 (𝑔) | ≤ 𝜖 ∀𝑔 ∈ 𝐺 (7)

We can use a slack parameter 𝜖 to have a less strict requirement
(Eq.7). While the goal of achieving parity is noble, achieving it
through the matching of a single time step is rarely possible, espe-
cially when there is a large disparity. Instead, it is often better to
look at amortized parity over a longer period of time [28].

To do this, we aim for amatching that “moves closer” towards par-
ity with the goal of achieving parity in the near future. Towards that
end, our framework uses variance var(Z), where Z = {𝑧 (𝑔)}𝑔∈𝐺 is
the set of metric values for all groups, as a proxy measure for fair-
ness and, at each time step, it takes a gradient step in the solution
space, moving in the direction that minimizes variance.

If we assume that the average of the metric over all groups is
stable (i.e., 𝜕

𝜕A 𝑧 ≃ 0, a reasonable assumption if a long enough
history is included), then we can find an assignment for a modified
score function that accounts for the gradient of the variance with
respect to the assignment A:

𝑠′ (𝑠𝑖 , 𝑎) = 𝑄 (𝑠𝑖 , 𝑎) − 𝜆
𝜕

𝜕A var(Z)

= 𝑄 (𝑠𝑖 , 𝑎) −
1
|Z| 𝜆

𝜕

𝜕A
∑︁
𝑧 𝑗 ∈Z

(𝑧 𝑗 − 𝑧)2

= 𝑄 (𝑠𝑖 , 𝑎) +
2
|Z| 𝜆

∑︁
𝑧 𝑗 ∈Z

(𝑧 − 𝑧 𝑗 )
𝜕𝑧 𝑗

𝜕A (8)

where 𝜆 is a hyperparameter. The general form above for the second
term is our incentive score: A constant (weight) multiplied by the
disparity of group 𝑗 , scaled by a derivative term. We show later
that the sum can usually be simplified within the context of a given
action 𝑎 and the derivative can be approximated for specific metrics.

The “Simple Incentives” idea is that, for each group involved in
an action, we provide them with an incentive (or penalty) propor-
tional to how disadvantaged (or advantaged) their group has been
historically. Given the recent abundance of black-box algorithms,
we find this simplicity helpful from a transparency perspective,
making it easy to explain to any stakeholder how this score is
calculated.

5 HOMELESSNESS SERVICES
In this section, we instantiate a resource allocation problem on
a homelessness prevention dataset [19]. Homelessness is a long-
standing social issue that affects over half a million people annually
in the US [23]. Congress allocates funds to support homeless people
using different kinds of interventions, and individuals or families
are assigned to these interventions on a case-by-case basis. Recent
work [19, 24] looks at using a data-driven approach to improve the
quality of these assignments, by estimating counterfactual prob-
abilities of re-entry into homelessness. The objective is to create
an alternative assignment that reduces the overall probability of
re-entry across all people availing homeless services.

We formulate the homelessness-intervention allocation problem
as a TRAP, represented by the tuple ⟨𝛼, 𝑆, {𝐴𝑖 }𝑖∈𝛼 ,𝑇 , 𝑅,𝛾, 𝑐⟩. In



this model, the interventions 𝐼 are treated as the resources, with
limited capacity 𝐶𝑖 that may become available at future times. The
agents ℎ ∈ 𝛼 correspond to the various households looking for
interventions, where each household ℎ is associated with a state 𝑆ℎ
that captures some demographic information about the household,
as well as their current status.

An action 𝑎𝑖
ℎ

∈ 𝐴ℎ corresponds to matching a household to
an available intervention 𝑖 ∈ 𝐼 . 𝑅(ℎ, 𝑖) is the benefit of assigning
householdsℎ to intervention 𝑖 ∈ 𝐼 . To avoid discriminating between
individuals, we keep this a unit reward for all allocations. The
utility of an assignment, as described in existing work [19] is just
the probability of re-entry into homelessness when household ℎ is
matched to intervention 𝑖 , Pr(ℎ, 𝑖).

Thus, we can write the action-value for this problem as:

𝑄 (𝑎𝑖
ℎ
) = 𝑅(𝑠ℎ, 𝑖) − Pr(ℎ, 𝑖) (9)
= 1 − Pr(ℎ, 𝑖) (10)

An allocation A is a concatenation of interventions assigned to
each household, with Aℎ denoting the intervention allocated to
household ℎ. The consumption function 𝑐 (Aℎ) returns a vector of
size |𝐼 |, showing which intervention was used by an action. The
optimization problem can then be written as follows, following
Eq.5. 𝑥ℎ (𝑖) is an indicator variable denoting whether household ℎ
was matched to intervention 𝑖 .

max
𝑥ℎ (𝑖 ) ∈{0,1}

∑︁
ℎ∈𝛼

∑︁
𝑖∈𝐼
𝑥ℎ (𝑖)𝑄 (𝑎𝑖

ℎ
) s.t. (11)∑︁

𝑖∈𝐼 ,𝑥ℎ (𝑖 ) ∈{0,1}
𝑥ℎ (𝑖) = 1, ∀ℎ ∈ 𝛼 (12)∑︁

𝑎∈A
𝑐 (𝑎)𝑖 ≤ 𝐶𝑖 , ∀𝑖 ∈ 𝐼 (13)

Equations 12 and 13 show that each household must be allocated
one intervention, and the total capacity for each intervention must
not be violated. We assume that we have exactly as many inter-
ventions as households. Since the dataset (from [19] contains the
actual intervention that was assigned to each household, we can
use that to construct the capacities of each intervention. The ILP
we formulated here is equivalent to the one proposed by Kube et al.
[19].

We also note that there is an online nature to this problem.
The original dataset spans a few years, but in real life, we cannot
wait for years before allocating resources to homeless people in
need. Thus, we use information about the arrival dates of various
households and batch them into groups over discrete time windows
of length 30 days. Each time window, we accumulate the arrived
households and solve the optimization problem stated above to
allocate interventions. For our experiments here, we do not model
the exit dates of the households, and thus, consumed interventions
do not become available at a later date again.

5.1 Simple Incentives and Homelessness
The households in the previous setup may belong to various dif-
ferent groups, as described by features in their state description
𝑠ℎ . Let 𝐺 : 𝛼 → {1, 2, . . . , 𝑔} be a general function that maps the
group membership of household ℎ to group 𝑗 uniquely. Further, let
𝑧 𝑗 denote the historical average probability of re-entry for group 𝑗 ,

Table 1: The effect of the fairness function 𝐹 (𝑎𝑖
ℎ
) for 𝛽 > 0.

Better-off group
𝑧 − 𝑧 (ℎ) > 0

Worse-off group
𝑧 − 𝑧 (ℎ) < 0

Bad action
Pr(ℎ, 𝑖) − 𝑧 (ℎ) > 0

Make this action
seem less bad

Make this action
seem worse

Good action
Pr(ℎ, 𝑖) − 𝑧 (ℎ) < 0

Make this action
seem less good

Make this action
seem better

and 𝑧 denote the average of all group re-entry probabilities. Further,
let 𝑧 (ℎ) = 𝑧𝐺 (ℎ) map households to their group metric value. Then,
it is desirable to have similar probabilities of re-entry across groups
while having a low overall re-entry probability. To incorporate the
incentive-based fairness function as described in Eq.8, we construct
the following modified score function.

𝑠′ (𝑎) = 𝑄 (𝑎) + 𝛽
∑︁
𝑧 𝑗 ∈Z

(𝑧 − 𝑧 𝑗 )
𝜕𝑧 𝑗

𝜕A

= 𝑄 (𝑎) + 𝛽
∑︁
𝑧 𝑗 ∈Z

(𝑧 − 𝑧 𝑗 )
𝜕𝑧 𝑗

𝜕𝑎
(14)

Any action 𝑎 serves to modify only the connected household’s
group probability. So, for all 𝑧 𝑗 ≠ 𝑧 (ℎ), the gradient term is zero.
Thus, we can simplify Eq.14 as:

𝑠′ (𝑎) = 𝑄 (𝑎) + 𝛽 (𝑧 − 𝑧 (ℎ)) 𝜕𝑧 (ℎ)
𝜕𝑎

(15)

The change in 𝑧 (ℎ) depends on the history being considered. To
not bias this by group size, we instead just approximate 𝜕𝑧 (ℎ)

𝜕𝑎 =

𝑃𝑟 (ℎ, 𝑖) − 𝑧 (ℎ). Any action that has a larger probability than the
current group metric increases it, and vice-versa. The magnitude
of change is also proportional to the difference, so this serves as a
good substitute for the gradient.

We can write a fairness score 𝐹 (𝑎) as follows:

𝐹 (𝑎) =𝑔𝑟𝑜𝑢𝑝_𝑎𝑑𝑣 × 𝑎𝑐𝑡𝑖𝑜𝑛_𝑎𝑑𝑣 (16)
𝑔𝑟𝑜𝑢𝑝_𝑎𝑑𝑣 = 𝑧 − 𝑧 (ℎ)
𝑎𝑐𝑡𝑖𝑜𝑛_𝑎𝑑𝑣 = Pr(ℎ, 𝑖) − 𝑧 (ℎ)

The sign of the group advantage tells us whether the group𝐺 (ℎ)
is better than the average group or not, and the action advantage
tells us whether the intervention 𝑖 leads to a reduction (or increase)
in the group metric.

Thus, the final form of the score is as follows:

𝑠𝛽 (𝑎) = 𝑄 (𝑎) + 𝛽 𝐹 (𝑎) (17)

Here, 𝛽 is a hyperparameter that controls the value of fairness.
Table 1 shows the effects of this fairness score on various types
of groups and actions. In general, this has the effect of making
actions for worse-off groups seem much more consequential, thus
incentivizing picking of a better option over a worse one, while it
makes better-off groups’ choices seem less consequential, so it is
okay to trade-off more of their value to serve the worse off groups.

Additionally, we also explore the effect of only performing a
subset of the score modifications.



• SI(+): We only use the bonus when it makes actions seem
better than they are, i.e. when 𝐹 (𝑎) is positive.

𝑠𝛽 (𝑎) = 𝑄 (𝑎) + 𝛽 max(𝐹 (𝑎), 0) (18)

• SI(-): We only use the bonus when it makes actions seem
worse i.e. when 𝐹 (𝑎) is negative.

𝑠𝛽 (𝑎) = 𝑄 (𝑎) + 𝛽 min(𝐹 (𝑎), 0) (19)

We expect both these approaches to have different effects, as
they make different combinations of actions more appealing to
the decision maker (ILP). As a reminder, the ILP maximizes the
action-values. Since the action value contains the negative of the
probability of re-entry, it minimizes the cumulative probability of
re-entry across all assignments.

6 EXPERIMENTS
We used the counterfactual probabilities generated using Bayesian
Additive Regression Trees (BART) as presented by Kube et al. [19]
as our estimates of re-entry probability for each household when
matched to one of four interventions: Emergency Shelter (ES), Tran-
sitional Housing (TH), Rapid Re-housing (RRH) and Homelessness
Prevention measures (Prev). Descriptions of these interventions
can be found in the original paper [19]. Each household has a het-
erogenous order of utility over the available interventions. In total,
there were 13,940 households. There were differing counts of each
intervention available: Prev: 6202, ES: 4441, TH: 2451, RRH: 846.
As stated earlier, we assumed each intervention slot could only be
assigned once and would not re-enter the system, and similarly,
each household was also considered for entry only once.

Each household was associated with close to 50 features. Of these,
38 features had at least two and at most twenty unique groups,
excluding groups with less than 50 members. We considered each
of these groups as potential groups of interest, and ran experiments
to see if our method could improve fairness on arbitrary group
divisions.

We ran experiments for a variety of 𝛽 values in a logarithmic
grid search, starting at 𝛽 = 10 and ending at 𝛽 = 10000. For each
feature used as a group identifier, we ran 3 experiments, one with
the basic SI, one with SI(+) and one with SI(-).

As a metric for fairness, we use the Gini coefficient, a popular
metric used to measure income inequality in a population. We
evaluate 𝐺𝑖𝑛𝑖 (Z) over all group metrics. A Gini coefficient of 0
implies perfect equality, so we want to minimize this metric. Our
metric for efficiency is the overall probability of re-entry, which
is just the aggregate re-entry probability Pr(ℎ, 𝑖) for all allocated
household-intervention pairs. We want this to be low as well.

In our experiments, we compare our fair solutions with the
fairness incentives to a baseline ILP matching (Eq.11. To do this,
we report the Price of Fairness (PoF) and the Benefit of Fairness
(BoF). The PoF compares the loss in efficiency vis-a-vis the re-entry
probability. Let 𝑃𝑅𝐸𝑜𝑝𝑡 be the re-entry probability with the optimal
ILP solution, and 𝑃𝑅𝐸𝑆𝐼 be the re-entry probability with one of our
fairness methods. Then,

PoF =
𝑃𝑅𝐸𝑆𝐼

𝑃𝑅𝐸𝑜𝑝𝑡
(20)

Figure 1: The distribution of average probabilities across
different groups by solution method for the feature “Hous-
ingStatusAtEntry”.

Here, we expect suboptimal solutions to have PoF>1. Similarly, if
𝐺𝑖𝑛𝑖𝑜𝑝𝑡 results from the optimal ILP and 𝐺𝑖𝑛𝑖𝑆𝐼 results from our
methods,

BoF =
𝐺𝑖𝑛𝑖𝑆𝐼

𝐺𝑖𝑛𝑖𝑜𝑝𝑡
(21)

Here, we expect our solutions to have BoF<1.

6.1 Evaluation Results
For each feature used as group information, we report the BoF for
the best 𝐺𝑖𝑛𝑖 (Z) obtained by our method for any 𝛽 value, while
maintaining the PoF to be below 1.05.We also report the correspond-
ing 𝛽 value that led to that assignment. The results are presented
in Table 2.

We observe that we are generally able to significantly improve
the fairness using any of our methods for most group divisions.
There are some instances (like PrimaryRace) where using SI-based
fairness doesn’t improve the distribution at all, but barring these
exceptions, we observe a few trends:

• SI(-) performs really well for most features. Nearly two-thirds
of the time (25/38), it gets the best BoF with low PoF.

• SI is sometimes able to do really well (9/38)
• SI(+) is the poorest performing method.

This suggests that only improving the probabilities of actions is
not a good strategy, while typically, only reducing the probabilities
(making bad options worse for worse-off groups and good options
seem less good for advantaged groups) is successful in allowing
for better fairness over repeated allocations over time. We also
observe that there is a high variability in this value across features,
indicating that different features have different responses to the
trade-off weight.

6.2 Empirical Observations: Selected Results
Here, we pick one representative group feature and analyze it in
detail, to provide readers with a better understanding of our results.
We select the feature “HousingStatusAtEntry", which captures the
current housing status of a household before intervention. Using
this feature to inform group division, we get the following groups: 1:
Homeless (1156 households), 2: at imminent risk of losing housing
(3551 households), 3: at risk of homelessness (1242 households), 4:



Table 2: Fairness improvement for group divisions based on various features. For each method, we show the best Benefit of
Fairness (BoF) achieved while restricting the Price of Fairness (PoF) to be below 1.05.

Group Original SI SI(+) SI(-)
Prob Gini Beta PoF BoF Beta PoF BoF Beta PoF BoF

PrimaryRace 0.2443 0.1114 0 – – 0 – – 25 1.0021 0.9982
Gender 0.2443 0.0184 100 1.0129 0.8723 500 1.0457 0.3977 2500 1.0227 0.0421
Ethnicity 0.2443 0.1752 25 1.0025 0.7231 25 1.0023 0.7210 1000 1.0031 0.8536

VeteranStatus 0.2443 0.0579 100 1.0066 0.9405 100 1.0431 0.6369 750 1.0146 0.6500
DisablingCondition 0.2443 0.1223 25 1.0489 0.9288 25 1.0231 0.9400 75 1.0484 0.8764

HousingStatusAtEntry 0.2443 0.1939 75 1.0410 0.5712 100 1.0436 0.6977 2500 1.0390 0.5273
HUDChronicHomeless 0.2443 0.0941 25 1.0288 0.8808 25 1.0199 0.8884 100 1.0330 0.5964

PhysicalDisability 0.2443 0.0580 250 1.0497 0.4089 250 1.0115 0.7993 10000 1.0475 0.5091
ReceivePhysicalDisabilityServices 0.2443 0.0372 100 1.0087 0.9510 250 1.0381 0.8608 2500 1.0204 0.6670

HasDevelopmentalDisability 0.2443 0.1386 10 1.0000 0.9988 10 1.0004 0.9983 1000 1.0476 0.4891
ReceiveDevelopmentalDisabilityServices 0.2443 0.0963 0 – – 25 1.0437 0.7385 7500 1.0449 0.3466

HasChronicHealthCondition 0.2443 0.0264 0 – – 250 1.0445 0.8548 2500 1.0373 0.6426
ReceiveChronicHealthServices 0.2443 0.0051 0 – – 0 – – 0 – –

HasHIVAIDS 0.2443 0.0372 1000 1.0132 0.4644 100 1.0103 0.6428 1000 0.9990 0.6677
HasMentalHealthProblem 0.2443 0.0863 50 1.0361 0.8037 75 1.0474 0.7868 500 1.0448 0.5828

ReceiveMentalHealthServices 0.2443 0.0793 50 1.0345 0.8205 50 1.0209 0.873 250 1.0379 0.6614
HasSubstanceAbuseProblem 0.2443 0.0940 50 1.0468 0.6092 75 1.0472 0.822 10000 1.0087 0.8402

ReceiveSubstanceAbuseServices 0.2443 0.0196 2500 1.0371 0.0899 7500 1.0422 0.4135 10000 1.0118 0.3769
DomesticViolenceSurvivor 0.2443 0.0659 50 1.0458 0.5524 25 1 0.9999 25 – –

proj_type_ent 0.2443 0.1210 50 1.0488 0.6118 25 1.0285 0.8845 750 1.0471 0.5172
proj_type_exit 0.2443 0.1026 25 1.0427 0.6990 25 1.0354 0.8607 250 1.0446 0.5511

numProj_before_exit 0.2443 0.0449 0 – – 0 – – 250 1.0432 0.6672
reentered 0.2443 0.0981 50 1.0436 0.5927 75 1.0445 0.6915 1000 1.0332 0.4766

reenteredNotStable 0.2443 0.0739 75 1.0466 0.3994 100 1.0438 0.6735 1000 1.0285 0.4562
reenteredFedDef 0.2443 0.0982 50 1.0436 0.5930 75 1.0446 0.6914 1000 1.0332 0.4770
reenterType 0.2443 0.0891 25 1.0250 0.8621 50 1.0417 0.7413 1000 1.0489 0.4649

HousingStatusNextCall 0.2443 0.1419 25 1.0245 0.6551 50 1.0489 0.7788 750 1.0246 0.6690
SpousePresent 0.2443 0.0947 500 1.0415 0.4416 1000 1.0367 0.4943 5000 1.0436 0.4001

Children 0.2443 0.1871 100 1.0466 0.7330 100 1.0277 0.7512 2500 1.0339 0.9339
Children0_2 0.2443 0.1977 50 1.0444 0.9373 100 1.0492 0.9192 250 1.0415 0.9162
Children3_5 0.2443 0.0924 0 – – 0 – – 0 – –
Children6_10 0.2443 0.1434 25 1.0002 0.9638 25 1.0003 0.9648 500 1.0122 0.9558
Children11_14 0.2443 0.1550 75 1.0024 0.9159 100 1.0269 0.9013 1000 1.0421 0.8860
Children15_17 0.2443 0.2197 75 1.0032 0.8554 750 1.0136 0.8590 10000 1.003 0.8450
num_members 0.2443 0.1543 500 1.0487 0.7437 250 1.0440 0.7509 500 1.0109 0.8111

UnrelatedChildren 0.2443 0.1288 25 1.0138 0.7532 50 1.0341 0.7388 250 1.0422 0.6620
UnrelatedAdults 0.2443 0.2619 500 1.0175 0.8881 100 1.0053 0.9073 10000 1.0246 0.8912

proj 0.2443 0.1209 50 1.0487 0.6081 25 1.0285 0.8838 750 1.0473 0.5140

stably housed (402 households), 8: unknown status (6326 house-
holds) and -1: missing information (1263 households).

Figure 1 shows the distribution of average groupwise probabili-
ties of re-entry for the four treatments (ILP, SI, SI(+), SI(-)) of the
corresponding row in Table 2. We can see that for all SI methods,
the group probabilities are shifted towards the mean. Empirically,
this means we see an improvement in fairness, while the overall
probability of re-entry is bounded to be within 5% of the original.
This visually shows the intended effect of our incentive score: to
move group scores closer to the mean.

Looking at Figure 2, we can more directly compare the perfor-
mance of the three SI variants when 𝛽 is varied. With increasing 𝛽 ,
we see an improvement in fairness, but at a cost to overall utility.

Qualitatively, we see that the SI(-) method pareto dominates the
others. For larger BoF ratios, we see that it is possible to improve
fairness without significant increase in PoF. However, if much lower
Gini values are required, SI seems to be the better approach, achiev-
ing much lower BoF albeit at a higher cost. On the other hand,
SI(+) still seems to improve fairness, but at a much higher PoF. The
general trend seems to favor SI and SI(-) over SI(+), as we observe
similar behavior for most other features.

We note that the trends observed are not universal, and there
are various features that, when used as group membership, do not
work well with our framework to improve fairness. We hypothesize
that the relationship between features and the utility estimation
process plays a crucial role in deciding which method works well



Figure 2: The trade-offs in PoF and BoF for the feature “Hous-
ingStatusAtEntry”. The optimal point is to the bottom-left.

for that feature. Further experiments are needed to tease out the
exact cause of the variable behavior.

7 CONCLUSION
In this work, we presented a general framework for modelling
resource allocation problems with repeated matching, and using
demographic parity as a starting point, derived a simple incentive-
based scheme for continually improving fairness in an online set-
ting. We showed three variants of our framework, and showed
their efficacy through evaluation on a real-world dataset. We found
interesting patterns in the behavior of each of the methods, which
leave questions open for exploration in future work.

8 ETHICS STATEMENT
In this work, we take the data provided in our source material as is,
to construct a matching problem and demonstrate a way of improv-
ing fairness if the value estimates are correctly identified. We do
not claim that this approach will work in practice, as the feasibility
of the matches may have real-world considerations not captured
within the dataset. We only aim to provide a discussion for a possi-
ble method of improving group fairness, that can presents decision
makers with some insight on similar online resource allocation
problems.
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