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ABSTRACT
Agent-based simulators (ABS) are a popular epidemiological mod-

elling tool to study the impact of various non-pharmaceutical in-

terventions in managing an epidemic in a city (or a region). They

provide the flexibility to accurately model a heterogeneous popula-

tion with time and location varying, person-specific interactions

as well as detailed governmental mobility restrictions. Typically,

for accuracy, each person is modelled separately. This however

may make computational time prohibitive when the city popula-

tion and the simulated time is large. In this paper, we dig deeper

into the underlying probabilistic structure of a generic, locally de-

tailed ABS for epidemiology to arrive at modifications that allow

smaller models (models with less number of agents) to give accu-

rate statistics for larger ones, thus substantially speeding up the

simulation. We observe that simply considering a smaller aggregate

model and scaling up the output leads to inaccuracies. We exploit

the observation that in the initial disease spread phase, the starting

infections create a family tree of infected individuals more-or-less

independent of the other trees and is modelled well as a multi-type

super-critical branching process. Further, although this branching

process grows exponentially, the relative proportions amongst the

population types stabilise quickly. Once enough people have been

infected, the future evolution of the epidemic is closely approxi-

mated by its mean field limit with a random starting state. We build

upon these insights to develop a shifted, scaled and restart-based

algorithm that accurately evaluates the ABS’s performance using

a much smaller model while carefully reducing the bias that may

otherwise arise. We apply our algorithm to Covid-19 epidemic in a

city and theoretically support the proposed algorithm through an

asymptotic analysis where the population size increases to infinity.

We develop nuanced coupling based arguments to show that the

epidemic process is close to the branching process early on in the

simulation.
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1 INTRODUCTION
Agent-based simulators (ABS) are a popular tool in epidemiology

(See [5], [11]). In this paper we focus on ABS used to model epi-

demics such as Covid-19 in cities and we illustrate our method-

ological contributions through the use of ABS for modelling Covid

evolution in the city of Mumbai. As is apparent from the paper, the

underlying ideas are valid more generally for any epidemic in a

large city that may have an initial exponential growth phase that

tapers down when sufficient population is infected (See [4], [6]).

As is well known, in an ABS in epidemic modelling of a city, a

synthetic copy of it is constructed on a computer that captures the

population interaction spaces and detailed disease spread as well as

disease spreading interactions as they evolve in time. Typically, each

individual in the city is modelled as an agent, so that total number of

agents equal the total city population. The constructed individuals

reside in homes, children may go to schools, adults may go to work.

Individuals also engage with each other in community spaces (to

capture interactions in marketplaces, restaurants, public transport,

and other public places). Homes, workplaces, schools sizes and

locations and individuals associated with them, their gender and

age, are created to match the city census data and are distributed

to match its geography. Government policies, such as partial, loca-

tion specific lockdowns for small periods of time, case isolation of

the infected and home quarantine of their close contacts, closure

of schools and colleges, partial openings of workplaces, etc. lead

to mobility reduction and are easily modelled. Similarly, variable

compliance behaviour in different segments of the population that

further changes with time, is easily captured in an ABS. Further, it

is easy to introduce new variants as they emerge, the individual

vaccination status, as well as the protection offered by the vaccines

against different variants as a function of the evolving state of the

epidemic and individual characteristics, such as age, density of in-

dividual’s interactions, etc (see [12]). Thus, this microscopic level

modelling flexibility allows ABS to become an effective strategic

and operational tool to manage and control the the disease spread.

See [5] for an ABS used for UK and USA related studies specific

to COVID-19, [7] for a COVID-19 study on Sweden, [1], [12] for a

study on Bangalore and Mumbai in India. See, e.g., [8] and [11] for

an overview of different agent-based models.

Key drawback: However, when a reasonably large population is

simulated, especially over a long time horizon, an ABS can take

huge computational time and this is its key drawback. This becomes

particularly prohibitive when multiple runs are needed using dif-

ferent parameters. For instance, any predictive analysis involves

simulating a large number of scenarios to provide a comprehensive

view of potential future sample paths. In model calibration, the

key parameters such as transmission rates, infectiousness of new

variants are fit to the observed infection data over relevant time

horizons, requiring many computationally demanding simulations.

Key contributions:We develop a shift-scale-restart algorithm
(described later) that carefully exploits the closeness of the under-

lying infection process (process of number infected of each type

at each time), first to a multi-type super critical branching process,

and then, suitably normalised, to the mean field limit of the infec-

tion process, so that the output from the smaller model accurately

matches the output from the larger one. Essentially, both the smaller



and the larger model, with identical initial conditions of small num-

ber of infections, evolve similarly in the early days of the infection

growth. Interestingly, in a super-critical branching process, while

the number of infections grows exponentially, the proportions of

the different types infected quickly stabilises, and this allows us to

shift a scaled path from a smaller model to a later time with negligi-

ble change in the underlying distribution. Therefore, once there are

enough infections in the system, output from the smaller model,

when scaled, matches that from the larger model at a later ‘shifted’

time. This shifting and scaling of the paths from the smaller model

does a good job of representing output from the larger model when

there are no interventions to the system. However, realistically,

government intervenes and population mobility behaviour changes

with increasing infections. To get the timings of these interventions

right, we restart the smaller model and synchronise the timings of

interventions in the shifted and scaled path to the actual timings in

the original path of the larger model.

We present numerical results where our strategy is implemented

on a model for Mumbai with 12.8 million population that realisti-

cally captures interactions at home, school, workplace and commu-

nity as well as mobility restrictions through interventions such as

lockdown, home quarantine, case isolation, schools closed, limited

attendance at workplaces, etc. Using our approach, we more or less

exactly replicate 12.8 million population model for Mumbai with all

its complexities, using only 1 million people model, providing an

almost 12.8 times speed-up. We numerically observe similar results

with a smaller half-million population model, although further re-

duction leads to increase in errors as the branching process phase is

very small and mean field approximations break down. Mumbai is a

densely populated city. To check for validity of our approach to less

dense cities, we reduce the parameters that capture interactions

and numerically observe that the proposed approach works well

even in substantially sparser cities.

Further, we provide theoretical support for the proposed ap-

proach through an asymptotic analysis where the population size

𝑁 increases to infinity.

Structure of remaining paper: To illustrate the key ideas prac-
tically, we first show the implementation of our algorithm on a

realistic model of Mumbai in Section 2. Then in Section 3, we briefly

summarise our agent based simulator. In Section 4 we spell out the

shift-scale-restart algorithm. We provide theoretical asymptotic

analysis supporting the efficacy of the proposed algorithm in Sec-

tion 5. We first conduct our analysis in a simpler set-up where the

coupling between the epidemic and the branching process and the

related analysis is easier. A more general analysis, and a more intri-

cate coupling is analysed in [13], where we also provide detailed

proofs for the results of Section 5. In Section 6 we demonstrate the

performance of our algorithm for less dense cities and smaller half

million and one lakh models. We conclude in section 7.

2 SPEEDING UP ABS: THE BIG PICTURE
A naive approach to speed up the ABS may be to use a representa-

tive smaller population model and scale up the results. Thus, for

instance, while a realistic model for Mumbai city may have 12.8

million agents (see [10]), we may construct a sparser Mumbai city

having, say, a million agents, that matches the bigger model in

essential features, so that, roughly speaking, in the two models

each infectious person contributes the same total infection rate to

all susceptibles at each time. The output numbers from the smaller

model may be scaled by a factor of 12.8 to estimate the output

from the larger model. We observe, somewhat remarkably, that

this naive approach is actually accurate if the initial seed infections

in the smaller model (and hence also the larger model) are large,

say, of the order of thousands, and are identically distributed in

both the smaller and the larger model (see Figure 1 where the num-

ber exposed are plotted under a counter-factual no interventions

scenario. The comparative statements hold equally well for other

statistics such as the number infected, hospitalised, in ICUs and

deceased). The rationale is that in this setting both the smaller and

the larger model have sufficient infections so that the proportion of

the infected population in both the models well-approximate their

identical mean field limits.

However, modelling initial randomness in the disease spread is

important for reasons including ascertaining the distribution of

when and where an outbreak may be initiated, the probability that

some of the initial infection clusters die-down, getting an accurate

distribution of geographical spread of infection over time, capturing

the intensity of any sample path (the random variable𝑊 in the

associated branching process, described in Theorem 5.1), etc. These

are typically captured by setting the initial infections to a small

number, say, around a hundred, and the model is initiated at a well

chosen time (see [1]). In such settings, we observe that the scaled

output from the smaller model (with proportionately lesser initial

infections) is noisy and biased so that the simple scaling fix no

longer works (see Figure 2. In [13], we explain in a simple setting

why the scaled smaller model is biased and reports lower number

of infections compared to the larger model in the early infection

spread phase).

Additionally, we observe that in the early days of the infection,

the smaller and the larger model with the same number of initial
infections, similarly clustered, behave more or less identically (see

Figure 3), so that the smaller model with the unscaled number of

initial seed infections provides an accurate approximation to the

larger one. Here again in the early phase in the two models, each

infectious person contributes roughly the same total infection rate

to susceptibles at home, workplace and community. Probabilistically

this is true because early on, both themodels closely approximate an

identical multi-type branching process. Shift-scale-restart algorithm

outlined in Section 4 exploits these observations to speed up the

simulator. We briefly describe it below.

Fixing ideas: Suppose that for Mumbai with an estimated popula-

tion of 12.8 million, a 12.8 million agent model is seeded with 100

randomly distributed infections on day zero. To get the statistics of

interest such as expected hospitalisations and fatalities over time,

instead of running the 12.8 million agent model, we start a 1 million

agent model seeded with 100 similarly randomly distributed infec-

tions at day zero and generate a complete path for the requisite

duration. To get the statistics for the larger model, we first observe

that under the no-intervention scenario, the output of the smaller

model more or less exactly matches that of the larger model for

around first 35 days (Figure 4). As our analysis in Section 5 suggests,



Figure 1: Scaled no. exposed in the smaller
model match the larger model when we
start with large, 12800 infections.

Figure 2: Scaled no. exposed in smaller
model do not match larger model when
we start with few, 128 infections.

Figure 3: Smaller and larger model are es-
sentially identical initially when we start
with same no. of few, 100 infections.

the two models closely approximate the associated branching pro-

cess till time
log(𝑁 /𝑖 log𝑁 )

log 𝜌
where 𝑁 denotes the population of the

smaller model and equals 1 million, 𝑖 denotes the number exposed

at time zero and equals 100, and 𝜌 denotes the exponential growth

rate in the early fatalities and is estimated from fatality data to

equal 1.21. The quantity
log(𝑁 /𝑖 log𝑁 )

log 𝜌
is estimated to equal 34.5

suggesting that both are close to the underlying branching process

around day 35. After this initial period of around 35 days, the city

has an average of 𝑥 thousand infections. We then determine the day

when the city had
𝑥

12.8 thousand infections. This turns out to be

day 21.5 in our example. We take the path from day 21.5 onwards,

scale it by a factor of 12.8, and concatenate it to the original path

starting at day 35. Theoretical justification for this time shift comes

from the branching process theory, where while a super-critical

multi-type branching process can be seen to grow exponentially

with a sample path dependent intensity, the relative proportions

amongst types along each sample path stabilise fairly quickly and

become more-or-less stationary (see Theorem 5.1). This shifted

and scaled output after 35 days matches that of the larger model

remarkably well. See Figure 4 where the generated infections from

the larger 12.8 million model and the shifted and scaled smaller 1

million model are compared. The choice of day 35 is not critical

above. Similar results would be achieved if we used lesser, as low

as 25 days in the original model.

In a realistic setting, administration may intervene once the

reported cases begin to grow. Suppose in the above example, an

intervention happens on day 40. (This is reasonable, as in modelling

Mumbai, our calibration exercise had set the day zero to February 13,

2020 (see, [10]), the resulting infections and reported cases reached

worrying levels around the second week of March. Restrictions in

the city were imposed around March 20, 2020.) In that case, the

shifted and scaled path from the day 21.5 would need to have the

restrictions imposed on day 26.5 (so that it approximates day 40 for

the larger model).We achieve this by using the first generated a path

till day 35, computing the appropriate scaled path time (21.5 days, in

this case), and then, using common random numbers, restarting an

identical path from time zero that has restrictions imposed from day

26.5. This path is scaled from day 21.5 onwards and concatenated

to the original path at day 35. In [13] we note that the restarted

path need not use common random numbers. Even if it is generated

independently, we get very similar output.

Figure 4 compares the number exposed in a 12.8 million Mumbai

city simulation (in no intervention scenario) with the estimates

Figure 4: Shift and scale smaller model
(no. of exposed) matches the larger model
under no intervention scenario.

Figure 5: Shift-scale-restart smaller
model match the larger one under real
world interventions over 250 days.

from the shift-scale-restart algorithm applied to the smaller 1 mil-

lion city. Numerical parameters for the no-intervention scenario

for Mumbai are described in [13]. Figure 5 compares the exposed

population process for the 12.8 million population Mumbai model

with the smaller 1 million one as per our algorithm under realistic

interventions (lockdown, case isolation, home quarantine, mask-

ing etc.) introduced at realistic times, as implemented in [1] using

similar parameters, for 250 days. In this experiment, smaller and

larger city evolves similarly till day 22. The scaled output from

smaller model on day 11.5 matches the larger model output on

day 22. Further, there is an intervention 11 days later at day 33,

therefore smaller city is restarted with intervention at day 22.5 (11

days after day 11.5). Estimates of the restarted simulation are scaled

from day 11.5 and appended at day 22 of the initial run (i.e., shifted

by 10.5 days).

We see that the smaller model faithfully replicates the larger one

with negligible error. Similar results hold for other health statistics



such as the number hospitalised and the number of cumulative

fatalities, and for larger models that include variants (see [13]).

3 AGENT BASED SIMULATOR
We informally and briefly describe the main drivers of the dynamics

in our model. Details are given in [1], [13].

The model consists of individuals and various interaction spaces

such ashouseholds, schools, workplaces and community spaces.
Infected individuals interact with susceptible individuals in these

interaction spaces. The model proceeds in discrete time steps of con-

stant width Δ𝑡 (six hours in our set-up). At a well chosen time zero,

a small number of individuals can be set to either exposed, asymp-

tomatic, or symptomatic states, to seed the infection. At each time 𝑡 ,

an infection rate 𝜆𝑛 (𝑡) is computed for each susceptible individual

𝑛. 𝜆𝑛 (𝑡) is a sum of the infection rates 𝜆ℎ𝑛 (𝑡) (from home), 𝜆𝑠𝑛 (𝑡)
(from school), 𝜆𝑤𝑛 (𝑡) (from workplace) and 𝜆𝑐𝑛 (𝑡) (from commu-

nity) coming in from infected individuals in respective interaction

spaces of individual 𝑛. Componentwise calculations of these rates

are detailed in [13] (Section 3.1).

In the next Δ𝑡 time, each susceptible individual moves to the

exposed state with probability 1− exp{−𝜆𝑛 (𝑡) · Δ𝑡}, independently
of all other events. Further, disease may progress independently in

the interval Δ𝑡 for the population already afflicted by the virus. The

probabilistic dynamics of disease progression as well as implemen-

tation of public health safety measures are briefly summarized in

[13] (Section 3) under simplified assumptions (underlying model is

similar to that in [1] and [5]). Simulation time is then incremented

to 𝑡 + Δ𝑡 , and the state of each individual is updated to reflect the

new exposures, changes to infectiousness, hospitalisations, recov-

eries, quarantines, etc., during the period 𝑡 to 𝑡 + Δ𝑡 . The overall
process repeats incrementally until the end of the simulation time.

4 SHIFT-SCALE-RESTART ALGORITHM
Let 𝜇0 (𝑁 ) denote the initial distribution of the infected population

at time zero in our model with population 𝑁 and let the simulation

run for a total of𝑇 time units. E.g., for Mumbai at a suitably chosen

time 0, we select 𝐼0 = 100 people at random from the non-slum

population and mark them as exposed. (Since initially the infection

came from international travellers flying into Mumbai, it is rea-

sonable to assume that most of them were residing in non-slums).

Algorithm 1 summarises the simulation dynamics.

Scaling the model: For 𝑘, 𝑁 ∈ N, 𝑘 > 1, let 𝑘𝑁 be the number of

individuals in the larger city, and 𝑁 in the smaller city. Roughly

speaking, the larger city has 𝑘 times more homes, schools and work-

places compared to the smaller city. The joint distribution of people

in homes, schools or workplaces is unchanged, and transmission

rates 𝛽ℎ , 𝛽𝑠 , 𝛽𝑤 and 𝛽𝑐 are unchanged (each transmission rate of

an infected individual in each interaction space is the expected

number of infection spreading contact opportunities with all the

individuals in that interaction space. It accounts for the combined

effect of frequency of meetings and the probability of infection

spread during each meeting).

When we initiate both the larger as well as the smaller city

with a same few and well spread infections, the disease spreads

similarly in homes, schools and workplaces. To understand the

disease spread through communities, for simplicity assume that

Algorithm 1 Simulation Dynamics

1: At 𝑡 = 0, start the simulation with 𝐼0 infections distributed as

per 𝜇0 (𝑁 ).
2: while 𝑡 < 𝑇 do
3: For each susceptible individual 𝑛, calculate 𝜆𝑛 (𝑡). Its status

then changes to exposed with probability 1 − exp(−𝜆𝑛 (𝑡)).
4: All individuals in some state other than susceptible, inde-

pendently transition to another state as per the disease pro-

gression dynamics.

5: 𝑡 ← 𝑡 + 1.

6: The above simulation is independently repeated many times

and average of performance measures such as number exposed,

number infected, number hospitalised, and number of fatalities

as a function of time are reported.

there is a single community. It is easy to see that each susceptible

person sees approximately 1/𝑘 times the community infection rate

in the larger city compared to the smaller city. On the other hand,

the larger city has 𝑘 times more susceptible population. This is

true even when there are more communities and for a general

distance function 𝑓 (see [13] Section 3 for role of 𝑓 in community

infection rates). Therefore, early on in the simulation, the total

number getting infected through communities is also essentially

identical between the larger and the smaller city, and the infection

process in the two cities evolves very similarly.

Let 𝑡𝑆 denote the time till the two cities evolve essentially identi-

cally (as seen empirically and suggested by theoretical analysis, this

is close to log𝜌 𝑁
∗
for 𝑁 ∗ = 𝑁 /𝑖 log𝑁 . Here log𝜌𝑚 = log𝑚/log 𝜌

for any 𝑚 ∈ ℜ+ and 𝜌 denotes the initial infection exponential

growth rate.)

In a realistic scenario, as the infection spreads, the administra-

tion will intervene and impose mobility restrictions. Thus, our

simulation adjustments to the small city need to account for the

timings of these interventions accurately. Let 𝑡𝐼 denote the first

intervention time (e.g., lockdown; typically after 𝛽 log𝜌 𝑁 time for

small 𝛽 ∈ (0, 1)). Let 𝑡𝑚𝑖𝑛 ≈ min{𝑡𝐼 , 𝑡𝑆 }. We need to restart our

simulation to ensure that the shift and scaled path incorporates the

intervention at the correct time. The Algorithm 2 achieves this and

is graphically illustrated in Figure 6. In the contrafactual no inter-

vention scenario where the population intermingling behaviour

does not change even as the disease spreads through it, we can just

use one simulation and need not restart the simulation.

As we see empirically, and as is suggested by Proposition 5.3, in

Algorithm 2, evolution of the infection process after time 𝑡𝑥/𝑘 , given
the state at that time, is more or less deterministic (even though the

process may be close to the associated branching process at this

time).

5 ASYMPTOTIC ANALYSIS
In the SSR algorithm, theoretical justification is needed for the fact

that early on in the small city simulation, we could take a path

at one time period, scale it, and stitch it to the path at another

appropriately chosen time period to accurately generate a path for

the larger city. We provide this through analyzing our city in an

asymptotic regime as the city population 𝑁 increases to infinity. To



Algorithm 2 Shift, scale and restart algorithm

1: At 𝑡 = 0, start the simulation with 𝐼0 infections dis-

tributed as per 𝜇0 (𝑁 ). Generate the simulation sample path

[𝑦1, 𝑦2, ..., 𝑦𝑡𝑚𝑖𝑛
] where 𝑦𝑡 denotes the statistics of the affected

population (e.g., number exposed, number hospitalised, num-

ber of fatalities) at time 𝑡 .

2: Suppose there are 𝑥 infections at 𝑡𝑚𝑖𝑛 , determine an earlier

time 𝑡𝑥/𝑘 in the simulation when there where approximately

𝑥
𝑘
infections in the city.

3: Restart a new simulation of the city using common random

numbers, but with the intervention introduced at time 𝑡 𝑥
𝑘
+

𝑡𝐼 − 𝑡𝑚𝑖𝑛 . Simulate it upto time 𝑇 − (𝑡𝑚𝑖𝑛 − 𝑡𝑥/𝑘 ). Denote the
time series of statistics of the affected population in the restart

simulation by

𝑧1, 𝑧2, ..., 𝑧𝑡𝑥/𝑘 , ..., 𝑧𝑇−(𝑡𝑚𝑖𝑛−𝑡𝑥/𝑘 ) .

4: The approximate statistics of the affected population for the

larger city is then obtained as

[𝑦1, 𝑦2, ..., 𝑦𝑡𝑚𝑖𝑛
, 𝑘 × 𝑧𝑡𝑥/𝑘+1, ..., 𝑘 × 𝑧𝑇+𝑡𝑥/𝑘−𝑡𝑚𝑖𝑛

] .
5: As is Step 6, Algorithm 1.

Figure 6: Shift, scale and restart algorithm

bring out the key observations simply, we consider a simpler model

where the interaction spaces of homes, workplaces and schools are

ignored and only a single community interaction space is retained.

A more intricate analysis involving interactions at homes, schools

and workplaces is given in [13]

We briefly review the standard multi-type branching process in

[13] (See [2], [9] for detailed review). In the following analysis,

we define an epidemic process in Section 5.1. Further, we define a

multi-type super-critical branching process tailored to the epidemic

process in Section 5.2. We describe the coupling between the two

processes in Section 5.3. We then state the results demonstrating

the closeness of the epidemic and the branching process in the early

disease spread phase in Section 5.4. The results demonstrating the

closeness of the epidemic process to its mean field limit once the

epidemic process has grown are given in Section 5.5.

5.1 Epidemic process dynamics
Notation: The city comprises of 𝑁 individuals and our interest is

in analyzing the city asymptotically as 𝑁 →∞.

• An individual at any time can be in one of the following disease

states: Susceptible, exposed, infective, symptomatic, hospitalised,

critical, dead and recovered. Individuals are infectious only in infec-

tive or symptomatic states. Denote all the disease states by D. For

simplicity, we ignore possible reinfections, although incorporating

them would not alter our conclusions.

• Each individual has some characteristics that are assumed to re-

main unchanged throughout the epidemic regardless of it’s disease

state. These include individual’s age group, disease progression

profile (e.g., some may be more infectious than others), community

transmission rates (e.g., individuals living in congested slums may

be modelled to have higher transmission rates), mobility in the

community (e.g., elder population may travel less to the community

compared to the working age population). We assume that set of

all possible individual characteristics are finite, and denote them

by A. Let 𝑁𝑎 , for 𝑎 ∈ A, denote the total number of individuals

with characteristic 𝑎 in system 𝑁 , and set 𝜋𝑎 =
𝑁𝑎

𝑁
for all 𝑎 ∈ A.

We assume that 𝜋𝑎 is independent of 𝑁 as 𝑁 →∞.
• Hence, each individual at any time may be classified by a type

s = (𝑎, 𝑑), where 𝑎 denotes the individual characteristic and 𝑑 the

disease state. Let S = A × D denote the set of all types.

• Let U ⊂ S denote all the types with susceptible disease state.

Hence,S\U denote the typeswhere individuals are already affected

(that is, they have been exposed to the disease at some point in the

past). Let 𝜂 = |S \ U|.
• Denote the number of individuals of type s at time 𝑡 by 𝑋𝑁

𝑡 (s)
and set X𝑁

𝑡 = (𝑋𝑁
𝑡 (s) : s ∈ S \ U). Then, X𝑁

𝑡 ∈ Z+
𝜂
.

• Let 𝐴𝑁
𝑡 =

∑
s∈S\U 𝑋

𝑁
𝑡 (s) denote the total number of affected

individuals in the system 𝑁 at or before time 𝑡 .

Dynamics: At time zero, for each 𝑁 , X𝑁
0

is initialised by setting a

suitably selected small and fixed number of people randomly from

some distribution 𝜇0 (𝑁 ) and assigning them to the exposed state.

All others are set as susceptible. The distribution 𝜇0 (𝑁 ) is assumed

to be independent of 𝑁 so we can set X𝑁
0

= X0 for all N.

Given X𝑁
𝑡 , X𝑁

𝑡+Δ𝑡 is arrived at through two mechanisms. (For the

ease of notation we will set Δ𝑡 = 1.) i) Infectious individuals at time

𝑡 who make Poisson distributed infectious contacts with the rest

of the population moving the contacted susceptible population to

exposed state, and ii) through population already affected moving

further along in their disease state. Specifically,

•We assume that an infectious individual with characteristic 𝑎 ∈ A
spreads the disease in the community with transmission rate 𝛽𝑎 .

Thus, the total number of infectious contacts it makes with all

the individuals (both susceptible and affected) in one time step

is Poisson distributed with rate 𝛽𝑎 . The individuals contacted are

selected randomly and an individual with characteristic 𝑎 ∈ A is

selected with probability proportional to𝜓𝑎,𝑎̃ (independent of 𝑁 ).

𝜓𝑎,𝑎̃ helps model biases such as an individuals living in a dense

region are more likely to infect other individuals living in the same

dense region. As a normalisation, set

∑
𝑎̃ 𝜋𝑎̃𝜓𝑎,𝑎̃ = 1.

• Once the number of infectious contacts for a particular charac-

teristic 𝑎 ∈ A have been generated, each contact is made with an

individual selected uniformly at random from all the individuals

with characteristic 𝑎.

• If an already affected individual has one or more contact with

an infectious individual, its type remains unchanged. On the other



hand, if a susceptible individual has at least one contact from any

infectious individual, it gets exposed at time 𝑡 + 1. Each susceptible

individual with characteristic 𝑎 ∈ A who gets exposed at time 𝑡 ,

increments X𝑁
𝑡+1 (𝑎, 𝑒𝑥𝑝𝑜𝑠𝑒𝑑) by 1. A susceptible individual that has

no contact with an infectious individual remains susceptible in the

next time period.

• Once an individual gets exposed, its disease progression is in-

dependent of all the other individuals and depends only on its

characteristics, that is, the disease progression profile of the char-

acteristic class the individual belongs to. The waiting time in each

state (except susceptible, dead and recovered) is assumed to be ge-

ometrically distributed. Transition to symptomatic, hospitalised,

critical, dead or recovered state happens with respective character-

istic (disease progression profile) dependent transition probabilities.

Thus, an individual of type s ∈ S \ U, some disease state other

than susceptible, at time 𝑡 transitions to some other state q at time

𝑡 + 1 with the transition probability 𝑃 (s, q) in one time step. The

probability 𝑃 (s, q) is independent of time 𝑡 and 𝑁 . If the transition

happens, 𝑋𝑁
𝑡+1 (s) is decreased by 1 and 𝑋𝑁

𝑡+1 (q) is increased by 1.

5.2 Associated branching process dynamics
For each 𝑡 , let B𝑡 ∈ Z+𝜂 , B𝑡 = (𝐵𝑡 (s) : s ∈ S \ U) where 𝐵𝑡 (s)
denote the number of individuals of s at time 𝑡 in the branching

process.

Dynamics: At time zero B0 = X0. Given 𝑩𝑡 , we arrive at 𝑩𝑡+1 as
follows:

•At time 𝑡 , every infectious individual of type 𝑎, for all 𝑎, gives birth

to independent Poisson distributed offspring of type (𝑎, 𝑒𝑥𝑝𝑜𝑠𝑒𝑑)
at time 𝑡 + 1 with rate 𝜋𝑎̃𝜓𝑎,𝑎̃𝛽𝑎 for each 𝑎. 𝐵𝑡+1 (𝑎, 𝑒𝑥𝑝𝑜𝑠𝑒𝑑) is
increased accordingly.

• Once an individual gets exposed, disease progression of the indi-

vidual has same transition probabilities as in each epidemic process.

An individual of type s ∈ S \ U, that is, in disease state other than

susceptible at time 𝑡 , transitions to some other disease state q at

time 𝑡 +1 with probability 𝑃 (s, q). If the transition happens, 𝐵𝑡+1 (s)
is decreased by 1 and 𝐵𝑡+1 (q) is increased by 1.

Let 𝐴𝐵
𝑡 =

∑
s∈S\U 𝐵𝑡 (s) denote the total number of offsprings

generated by time 𝑡 in the branching process.

The expected offsprings matrix 𝐾 ∈ ℜ+𝜂×𝜂 for {B𝑡 }: Let each
entry 𝐾 (s, q) of 𝐾 denote the expected number of type q offspring

of a single type s individual in one time step. LetH ⊂ S denote all

the types with the disease states that are infectious or may become

infectious in subsequent time steps (that is, types with disease

state either exposed, infective or symptomatic). LetH𝑐
denote its

complement. Individuals in H𝑐
do not contribute to community

infection. Let
˜H ⊂ S denote all the types with the disease states

that are infectious (that is infective or symptomatic state). Let E
denote H \ ˜H , that is, the set of all the types corresponding to

exposed individuals. Let 𝜂 = |H |.
As described above, an individual of type s ∈ S \ U, may give

birth to other exposed individuals if it is infectious, and/or may

itself transition to some other type in one time step. Then, 𝐾 can

be written as,

𝐾 (s, q) = 𝑃 (s, q) + 𝜋𝑎̃𝜓𝑎,𝑎̃𝛽𝑎 ∀ s = (𝑎, 𝑑) ∈ ˜H , q = (𝑎, ˜𝑑) ∈ E
𝐾 (s, q) = 𝑃 (s, q) otherwise.

(1)

It follows that

E (B𝑡+1) = 𝐾𝑇E (B𝑡 ) = (𝐾𝑇 )𝑡+1E (B0) . (2)

Theorem 5.1 for multi-type branching processes holds under

a standard assumption that the expected offspring matrix 𝐾 is

irreducible. However,𝐾 as defined in (1) is not irreducible. Theorem

5.1 observes that standard conclusions continue to hold for the

branching process {B𝑡 } associated with epidemic processes {X𝑁
𝑡 }

(for more details, see [13]).

Theorem 5.1. B𝑡/𝜌𝑡
𝑃−→ 𝑊 v as 𝑡 → ∞, where 𝑊 is a non-

negative random variable such that 𝑃{𝑊 > 0} > 0 iff 𝐵0 (s) ≠ 0 for
some s ∈ H and E (𝑊 |B0 = ei) = 𝑢 (𝑖) for all 𝑖 = 1, ..., 𝜂. Also, let
𝐴 = {𝜔 : 𝐵𝑡 (𝜔) → ∞} as 𝑡 → ∞. Then, for any 𝜖 > 0 and for all

𝑗 ∈ [1, 𝜂], lim𝑡→∞ 𝑃{𝜔 : 𝜔 ∈ 𝐴,
���� 𝐵𝑡 ( 𝑗 )∑𝜂

𝑖=1
𝐵𝑡 (𝑖 )

− 𝑣 ( 𝑗 )∑𝜂

𝑖=1
𝑣 (𝑖 )

���� > 𝜖} = 0.

5.3 Coupling epidemic and branching process
• Recall that at time zero, B0 = X0. We couple each exposed individ-

ual of each type in the epidemic process to an exposed individual

of the same type in the branching process at time zero.

• The coupled individuals in each of these processes follow the same

disease progression (using same randomness) and stay coupled

throughout the simulation.

• Further, when infectious, they generate identical Poisson number

of contacts (in epidemic process) and offsprings (in branching pro-

cess). Specifically, when a coupled individual with characteristic

𝑎 ∈ A is infectious, the number of contacts it makes in a time

step with all the individuals with characteristic 𝑎 ∈ A in epidemic

process is Poisson distributed with rate 𝜋𝑎̃𝜓𝑎,𝑎̃𝛽𝑎 . This equals the

offsprings generated by the corresponding coupled individual in

the branching process where the offsprings are with characteristic

𝑎 ∈ A and are of type (𝑎, 𝑒𝑥𝑝𝑜𝑠𝑒𝑑).
• In epidemic process, each contact is made with an individual

randomly selected from the population with the same character-

istic. If a contact is with a susceptible person, then that person is

marked exposed in the next time period and is coupled with the

corresponding person in the branching process.

•On the other hand, if in epidemic process, a new contact is with an

already affected individual, then this does not result in any person

getting exposed so that the corresponding offspring in the branch-

ing process is uncoupled. The descendants of uncoupled individ-

uals in the branching process are also uncoupled. In our analysis,

we will show that such uncoupled individuals in the branching

process vis-a-vis epidemic process are a negligible fraction of the

coupled individuals till time log𝜌 𝑁
∗
for large 𝑁 , where recall that

𝑁 ∗ = 𝑁 /log𝑁 and log𝜌 𝑁
∗ = log𝑁 ∗/log 𝜌 and 𝜌 denotes the

exponential growth rate of the branching process.

Denote the new uncoupled individuals born from the coupled

individuals in branching process at each time 𝑡 by 𝐺𝑁
𝑡 (referred

to as “ghost individuals”). As mentioned earlier, these and their

descendants remain uncoupled to epidemic system 𝑁 . Let 𝐷𝑁
𝑖,𝑡−𝑖

denote all the descendants of𝐺𝑁
𝑖

(ghost individuals born at time 𝑖)

after 𝑡 − 𝑖 time steps, i.e. at time 𝑡 .



Figure 7: Shift and scale smaller model
(no. of exposed) matches the larger model
under no intervention scenario (𝛽𝑛𝑒𝑤𝑐 =

𝛽𝑐/10).

Figure 8: Shift-scale-restart smaller
model (no. of exposed) matches the larger
model under intervention (𝛽𝑛𝑒𝑤𝑐 = 𝛽𝑐/10).

Figure 9: Shift-scale smaller model
is within 20% of the larger model
under intervention. 𝛽𝑛𝑒𝑤𝑐 = 𝛽𝑐/20,
(𝛽𝑛𝑒𝑤

ℎ
, 𝛽𝑛𝑒𝑤𝑤 , 𝛽𝑛𝑒𝑤𝑠 ) = (𝛽ℎ, 𝛽𝑤 , 𝛽𝑠 )/4.

5.4 The initial branching process phase
Following result shows that epidemic process is close to the multi-

type branching process till time log𝜌 𝑁
∗
.

Theorem 5.2. As 𝑁 →∞, for all s ∈ S \ U,

sup

𝑡 ∈[0,log𝜌 (𝑁 ∗/
√
𝑁 ) ]

���𝑋𝑁
𝑡 (s) − 𝐵𝑡 (s)

��� 𝑃−→ 0. (3)

sup

𝑡 ∈
[
0,log𝜌 𝑁 ∗

]
�����𝑋𝑁

𝑡 (s)
𝜌𝑡

− 𝐵𝑡 (s)
𝜌𝑡

����� 𝑃−→ 0. (4)

Result (3) was earlier shown for SIR setting in [3]. We extend

this result to general models and also prove the result (4) in this

more general setting.

Recall from Theorem 5.1 that, B𝑡/𝜌𝑡
𝑃−→𝑊 v as 𝑡 → ∞, where

𝑊 is a non-negative random variable representing the intensity

of branching process and v ∈ ℜ+𝜂 is the left eigenvector cor-

responding to eigenvalue 𝜌 of matrix 𝐾 . Therefore, initially (till

time log𝜌 𝑁
∗
) epidemic process grows exponentially at rate 𝜌 , with

sample path dependent intensity being determined by𝑊 .

The following proposition follows directly from Theorem 5.1 and

Theorem 5.2 and justifies the fact that the proportions across differ-

ent types stabilize quickly in the epidemic process, and thus early

on, till time log𝜌 𝑁
∗
, paths can be patched from one time period to

the other with negligible error due to change in the proportions.

Proposition 5.3. For 𝑡𝑁 →∞ as 𝑁 →∞ and
lim sup𝑁→∞

𝑡𝑁
log𝜌 𝑁 ∗ < ∞, then for all s ∈ S \ U:����� 𝑋𝑁

𝑡𝑁
(s)∑

q∈S\U 𝑋
𝑁
𝑡𝑁
(q)
− 𝑣 (s)∑

q∈S\U 𝑣 (q)

����� 𝑃−→ 0, as 𝑁 →∞.

Compartmental models are widely used to model epidemics.

Usually, in these models we start with infected population which

is a positive fraction of the overall population. However, little is

known about the dynamics if we start with a small, constant num-

ber of infections. In [13] we describe the results for some popular

compartmental models using Theorem 5.2 and 5.3.

5.5 Deterministic phase
As Theorem 5.2 and Proposition 5.3 note, early in the infection

growth, till time log𝜌 𝑁
∗
for large 𝑁 , while the number affected

grows exponentially, the proportion of individuals across different

types stabilizes. Here, the types corresponding to the susceptible

population are not considered because at this stage, the affected are

a negligible fraction of the total susceptible population. The growth

in the affected population in this phase is sample path dependent

and depends upon non-negative random variable𝑊 .

However, at time log𝜌 (𝜖𝑁 ) for any 𝜖 > 0 and large 𝑁 , this

changes as the affected population equals Θ(𝑁 ). Hereafter, the
population growth closely approximates its mean field limit whose

initial state depends on random𝑊 andwhere the proportions across

types may change as the time progresses. Our key result in this

setting is Theorem 5.4. To this end we need Assumption 1.

Let 𝑡𝑁 = 𝑙𝑜𝑔𝜌 (𝜖𝑁 ). Let 𝜇𝑁𝑡 denote the empirical distribution

across types at time 𝑡𝑁 + 𝑡 . This corresponds to augmenting the

vector X𝑁
𝑡𝑁 +𝑡 with the types associated with the susceptible pop-

ulation at time 𝑡𝑁 + 𝑡 and scaling the resultant vector with factor

𝑁 −1
.

Assumption 1. There exists a random distribution 𝜇0 (𝑊 ) ∈ ℜ+ (𝜂+1)

that is independent of 𝑁 such that 𝜇𝑁
0

𝑃−→ 𝜇0 (𝑊 ) as 𝑁 →∞.

Observe that 𝜇0 (𝑊 ) above is path dependent in that it depends

on the random variable𝑊 . The above assumption is seen to hold

empirically.

Let 𝑐𝑁𝑡 (𝑎) denote the total incoming-infection rate from the

community as seen by an individual with characteristic 𝑎 ∈ A at

time 𝑡 . It is determined from the disease state of all the individuals

at time 𝑡 . In our setup, 𝑐𝑁𝑡 (𝑎) equals∑︁
q=(𝑎̃, ˜𝑑 ) ∈S\U

𝜇𝑁𝑡 (q)1(type q is infectious)𝜓𝑎̃,𝑎𝛽𝑎̃, (5)

where 1 denotes the indicator function. For each individual

𝑛 ≤ 𝑁 , let 𝑆𝑡𝑛 denote its type at time 𝑡 . Then, for s = (𝑎, 𝑑) ∈ S

P
(
𝑆𝑡+1𝑛 = s|𝜇𝑁𝑡

)
= ℎ(𝑆𝑡𝑛, s, 𝑐𝑁𝑡 (𝑎)),

for a continuous function ℎ. In particular, the transition probability

only depends on the disease-state of the individual at the previous



time, the disease-state to which it is transitioning, and the infection

rate incoming to the individual at that time.

Recall that fromAssumption 1we have defined 𝜇0 (𝑊 ) ∈ ℜ+ (𝜂+1)

such that 𝜇𝑁
0

𝑃−→ 𝜇0 (𝑊 ) as 𝑁 →∞. Define 𝜇𝑡 (𝑊 ) ∈ ℜ+ (𝜂+1) such
that for all 𝑡 ∈ N, s = (𝑎, 𝑑) ∈ S,

𝜇𝑡 (s,𝑊 ) :=
∑︁

s′∈S
𝜇𝑡−1 (s′,𝑊 )ℎ(s′s, 𝑐𝑡−1 (𝑎,𝑊 )), (6)

where, 𝑐𝑡−1 (𝑎,𝑊 ) =
∑

q=(𝑎̃, ˜𝑑 ) ∈S
𝜇𝑡−1 (q,𝑊 )1(q is infectious)𝜓𝑎̃,𝑎𝛽𝑎̃ .

Theorem 5.4. Under Assumption 1 and for 𝑡 ∈ N, 𝜇𝑁𝑡
𝑃−→ 𝜇𝑡 (𝑊 )

as 𝑁 →∞.

In particular, if 𝜇𝑡 denotes the mean field limit of the normalised

process at time 𝑡 + log𝜌 (𝜖𝑁 ), then, the number of infections ob-

served in a smaller model with population𝑁 is approximately𝑁 ∗𝜇𝑡
and that of a larger model is approximately 𝑘𝑁 ∗𝜇𝑡 . Thus, the larger
model infection process can be approximated by the smaller model

infection process by scaling it by 𝑘 .

6 FURTHER EXPERIMENTS
A. SSR on sparser cities: While our experiments are designed for

Mumbai, a very dense city, it is reasonable to wonder if the results

would hold for less dense cities or regions. In this section we report

the experimental results for the sparser cities that are created by

reducing the contact and hence the transmission rates between

individual in different interaction spaces. Specifically, we consider

two reasonable scenarios:

• Scenario 1: The community beta is kept at one tenth the level

of the community beta for Mumbai considered in our earlier ex-

periments in Section 2. Figure 7, 8 shows that the result using SSR

algorithm matches the larger model in the no-intervention scenario

and the scenario with an intervention of home quarantine after

40 days. Although we did not conduct elaborate experimentation,

similar results should be true under more general and extensive

interventions.

• Scenario 2: Beta community is reduced by a factor of 20, beta home,

school and workplace by a factor 4. Under no intervention scenario

the result using SSR algorithm matched the larger model (See [13]).

However, it was observed that even in the no-intervention scenario,

the number of infections were very low after 200 days. Under home

quarantine after 40 days, the exposed cases from the smaller model

are within 20% of the larger model although both are more-or-less

negligible numbers, the highest less than 250 (Figure 9).

B. How small can the smaller model be: In the earlier experi-

ments in Section 2, we had compared the results of a 12.8 million

city to the results from using SSR on a smaller 1 million city. A

natural question to ask is how small the city can be for SSR to

continue to be accurate. We found that results using SSR algorithm

on 500,000 city were accurate while 100,000 city poorly matched

the larger model. Experiment details are given in [13].

7 CONCLUSION
In this paper we considered large ABS models used to model epi-

demic spread in a city or a region. These models are of great use in

capturing details of population types, their behaviour, time vary-

ing regulatory instructions, etc. A key drawback of ABS models is

that computational time can quickly become prohibitive as the city

size and the simulated time increases. In this paper we proposed

a shift-scale-restart algorithm that exploits the underlying prob-

abilistic structure and allows smaller cities to provide extremely

accurate approximations to larger ones using much less compu-

tational time. We supported our experiments and the algorithm

through asymptotic analysis where we showed that initial part of

the epidemic process is close to a corresponding multi-type branch-

ing process and very quickly the evolution of the epidemic process

is well approximated by its mean field limit. The fact that in multi-

type branching process the distribution of population across types

stabilizes quickly helped us shift sample paths across time without

loss of accuracy. To show closeness of the epidemic process to a

branching process we developed careful coupling arguments.
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