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ABSTRACT
We introduce a practical and scalable algorithm (PALMA) for solving

one of the fundamental problems of multi-agent systems – find-

ing matches and allocations – in unboundedly large settings (e.g.,
resource allocation in urban environments, mobility-on-demand

systems, etc.), while providing strong worst-case privacy guarantees.

PALMA is decentralized, runs on-device, requires no inter-agent

communication, and converges in constant time under reasonable

assumptions. We evaluate PALMA in a mobility-on-demand and a

paper assignment scenario, using real data in both, and demonstrate

that it provides a strong level of privacy (𝜀 ≤ 1 and median as low as

𝜀 = 0.5 across agents) and high-quality matchings (up to 86% of the

non-private optimal, outperforming even the privacy-preserving

centralized maximum-weight matching baseline).
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1 INTRODUCTION
One of the fundamental problems in multi-agent systems is find-

ing an optimal allocation, i.e., solving a maximum-weight match-

ing (MWM) problem. A wide range of applications – spanning

from mobility-on-demand systems and ridesharing [8] to kidney

exchange [24] – can be formulated and solved as a weighted match-

ing problem. Real-world matching problems pose three significant

challenges: (i) they may occur in unboundedly large settings (e.g.,
resource allocation in urban environments), (ii) they are distributed
and information-restrictive (agents have partial observability and

inter-agent communication might not be available [25]), and fi-

nally, (iii) individuals have to reveal their preferences in order to

get a high-quality match, which brings forth significant privacy

risks. In this work, we propose PALMA (Privacy-preserving ALtru-

istic MAtching), a matching algorithm designed to tackle all of the
aforementioned challenges.
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PALMA is a privacy-preserving adaptation of ALMA [6, 7, 10]; a

recently proposed algorithm for real-world, large-scale applications

that solves the first two challenges. As such, it is decentralized,
requires no communication between the participants, and converges

in constant (to the total problem size) time – in the realistic case

where each agent is interested in a (fixed size) subset of the total

resources.

The third challenge requires protecting the utility functions of
the agents. In recent years, Differential Privacy (DP) [11] (and its

variants) has emerged as the de facto standard for protecting the

privacy of individuals. Informally, a DP algorithm ensures indis-

tinguishability on the output distributions for any neighboring

inputs. We have designed a defense mechanism for PALMA based

on the idea of randomized response [33] – which involves adding

controlled randomness – that results in indistinguishability under

Local DP [15].

One final challenge arises when it comes to large-scale multi-

agent systems with a diverse set of agents, as it is hard to achieve

a meaningful privacy guarantee – in a practical way – using stan-

dard (L)DP if the problem has a large output space (e.g., matches,

and allocations) [17, 29]. Conventional (L)DP mechanisms often

require adding a lot of random noise to achieve a meaningful pri-

vacy guarantee, which in turn leads to a pronounced drop in the

solution quality. More often than not, this is not due to the inherent

difficulty of the problem at hand, but rather due to the generality

of the DP definition. Not only does DP consider a very broad class

of adversaries, it also protects all users – independent of their char-

acteristics – by the same guarantee. While this property is being

praised as one of the strongest arguments in favor of DP, it can be

completely redundant in many real-world applications for three

key reasons: (i) users might be willing to disclose less-sensitive

information (e.g., city of residence, but not exact location), (ii) the

attacker might already know coarser-grained information because

it is likely public or easily available and, thus, does not need to be

hidden (e.g., city of residence in a mobility-on-demand system, or

reviewer expertise in a paper assignment problem), and (iii) domain

characteristics might exclude a subset of solutions (e.g., a taxi in

Manhattan will not be assigned to serve a request in Brooklyn, and

an expert on auctions would not be assigned to review a robotics

paper, thus, there is no need for indistinguishably between taxis in

different boroughs or reviewers on different fields).

To solve this challenge, we motivate and develop a ‘context-

aware’ privacy definition (Piecewise Local Differential Privacy –

PLDP), which takes into account the ‘distance’ between the images

of two utility functions. The level of protection depends on that



distance; agents with utility functions that have images close in dis-

tance to each other would be indistinguishable from the attacker’s

point of view.

1.1 Our Contributions
(1)We propose PALMA, thefirst practical and scalable privacy
preserving algorithm for weightedmatching in unboundedly large
settings with thousands of agents (e.g., resource allocation in urban

environments, intelligent infrastructure, IoT devices, etc.).

(2)We introduce Piecewise Local Differential Privacy (PLDP), a
variant of differential privacy designed to protect the utility function

inmulti-agent applications. PLDP enables significant improvements

in solutions quality and strong theoretical privacy guarantees, while

being applicable in real-world, unboundedly large settings.
(3) We evaluate PALMA in amobility-on-demand and a paper
assignment scenario, using real data. PALMA is able to provide

a high degree of privacy, 𝜀 ≤ 1 and a median value as low as 0.5

across agents for 𝛿 = 10
−5
, and matchings of high quality (up to

86% of the non-private optimal).

The decentralized algorithm and corresponding privacy defini-

tion allows PALMA to adapt the noise added for obfuscation to

the privacy budget of each agent. This achieves significantly better

performance than the centralized Hungarian algorithm with the

fixed obfuscation required to achieve the same privacy guarantees

with an untrusted server.

1.2 Related Work
Finding a maximum-weight matching is one of the best-studied

combinatorial optimization problems [20, 26]. Yet, while the prob-

lem has been ‘solved’ from an algorithmic perspective – having

both centralized and decentralized polynomial algorithms – it is

not so from the perspective of multi-agent systems, for three key

reasons: (i) complexity, (ii) communication, and (iii) privacy.
The proliferation of intelligent systems will give rise to large-

scale, multi-agent based technologies. Algorithms for maximum-

weight matching, whether centralized or distributed, have runtime

that increases with the total problem size, even in the realistic case

where agents are interested in a small number of resources. Thus,

they can only handle problems of bounded size. Moreover, they

require a significant amount of inter-agent communication. Yet,

communication might not always be an option [25], and sharing

utilities, plans, and preferences creates high overhead. ALMA on

the other hand achieves constant in the total problem size running

time – under reasonable assumptions – while requiring no message

exchange (i.e., no communication network) between the partici-

pating agents [7]. The proposed approach, PALMA, preserves the
aforementioned two properties of ALMA, thus, dealing with the

first two of the posed challenges.

Differential Privacy (DP) [11–14] has emerged as the de facto

standard for protecting the privacy of individuals (see the supple-

ment [9] for the definition of DP, along with intuitive examples)
1
.

Informally, DP captures the increased risk to an individual’s privacy

incurred by his participation. A variation of differential privacy,

especially useful in our context, given the decentralized nature of

1
For a more comprehensive overview, we refer the reader to [15, 30].

PALMA, is Local Differential Privacy (LDP) [15]. LDP is a general-

ization of DP that provides a bound on the outcome probabilities for

any pair of individual agents rather than populations differing on a

single agent. Intuitively, it means that one cannot hide in the crowd.

Another strength of LDP is that it does not use a centralized model

to add noise—individuals sanitize their data themselves—providing

privacy protection against a malicious data curator. As a result, LDP

requires adding even more random noise to achieve a meaningful

bound, which would result in the decline of the solution quality.

In fact, it is impossible to have both meaningful social welfare and

privacy guarantees in matching problems under (L)DP [17]. (L)DP

ignores specifics of AI applications, such as a focus on a given task

or a particular data distribution.

Our work is inspired by the literature on ‘data-aware’ privacy

notions [30, 32] and distance-based generalisations of DP [3, 5]. As

a matter of fact, there are works that utilize such distance-based

notions to solve a weighted matching problem in specific domains

(e.g., [16, 22]). Yet, these are centralised approaches and thus face a

(computation and communication) complexity barrier (refer back

to the aforementioned challenges (i) and (ii) of real-world matching

problems). ALMA can also be combined with other existing notions

of privacy (e.g., LDP or geo-indistinguishability [3]), yet the solution

quality is inferior compared to the proposed, carefully crafted (with

ALMA in mind) noise, as we demonstrate in our evaluation.

2 PIECEWISE LOCAL DIFFERENTIAL
PRIVACY (PLDP)

Inspired by the notions of Bayesian DP [31] – which is based on the

observation that machine learning models are designed and tuned

for a particular data distribution which is also often available to the

attacker – and metric-based DP [5] and geo-indistinguishability

[3] – where indistinguishability depends on an arbitrary notion

of distance – we propose a new privacy model, namely Piecewise

Local Differential Privacy (PLDP). PLDP takes into account the

‘distance’ between the images of two utility functions, and the level

of protection depends on that distance. The rationale is that instead

of guaranteeing local privacy in the entire domain of agents, which

can be quite difficult and would result in low quality solutions due

to excessive noise, we focus on indistinguishability of agents with

similar preferences.

LetM : D → A be a randomized function with domain D
and range A. In the context of matching problems in multi-agent

systems, D is the space of utility functions and A is the action

space.

Definition 1. Let 𝜑 (·) be a set function that fragments D into
a collection of subsets {D𝑖 }. Then, a randomized algorithm M :

D → A satisfies (𝜀, 𝛿, 𝜑)-piecewise local privacy if for any two
inputs 𝑥, 𝑥 ′ ∈ D𝑖 , ∀𝑖 , and for any set of outcomes S ⊂ A it holds:

Pr [M(𝑥) ∈ S | 𝑥 ∈ D𝑖 ] ≤ 𝑒𝜀 Pr
[
M(𝑥 ′) ∈ S | 𝑥 ′ ∈ D𝑖

]
+ 𝛿.

2.1 Motivation
Consider a mobility-on-demand (MoD) application (e.g., rideshar-

ing). A MoD company can operate across multiple cities, countries,

or even continents. If a MoD provider employs traditional DP (e.g.,

LDP) to protect all users (independently of their characteristics)



with the same guarantee, the achieved social welfare will be as good

as a random solution2 in large-scale environments. This is because

the support of any agent has to include every resource (otherwise
an adversary could distinguish between agents), i.e., a request in

Manhattan might be paired with a taxi in Brooklyn. Moreover, it is

reasonable to assume an informed attacker (e.g., one that knows the

city of residence), and users may be willing to reveal approximate

location information (it is most likely acceptable to disclose the fact

that an individual is in Manhattan, however disclosing the exact

location is undesirable). Similarly, in a paper assignment problem

(reviewers to manuscripts), ensuring indistinguishably between an

expert on Markets & Auctions, and one on Robotics might be futile,

especially if the attacker possesses additional information (e.g., the

tracks of the papers) that would exclude infeasible matches.

The rationale behind PLDP is the following. Instead of guaran-

teeing local privacy in the entire domain of agents, which may

be quite difficult, we focus on indistinguishability of agents with

similar preferences. We fragment the space of utilities into regions

and guarantee privacy within these regions but not between them.

A useful real-world analogy is ZIP codes. Assume we would

like to release some location statistic with PLDP and we choose 𝜑

such that the initial location space is mapped into ZIP codes. Then,

(𝜀, 𝛿, 𝜑)-PLDP guarantee would certify that the reported statistic is

(𝜀, 𝛿)-locally private within every ZIP code. However, it would not

tell us anything about privacy of the reported statistic outside the

given ZIP code. In other words, while an agent can be distinguished

from agents outside his zip code, he is still indistinguishable from

all agents inside his ZIP code.

2.2 Privacy Properties
Note that PLDP is a straightforward relaxation of local privacy and

all the properties of LDP are satisfied within sub-domains D𝑖 . In

order to see that this is true, it is sufficient to consider the follow-

ing. Once the space D has been partitioned, the PLDP definition is

equivalent to the LDP definition within each sub-space D𝑖 . Hence,

basic properties of (L)DP, such as composition, post-processing, and
group privacy, as well as several instances of advanced composi-
tion [1, 15], will also hold for any pair 𝑥, 𝑥 ′ from a givenD𝑖 , as long

as these points do not dynamically change sub-domains between

applications of the privacy mechanism. The latter condition is satis-

fied in all considered scenarios: every new matching routine starts

with a fresh set of agents with random identifiers, and agents do

not change their utilities during the matching process.

2.3 Advantages of PLDP (vs. Distance-based
Generalisations of DP)

PLDP closely resembles another well-known privacy notion, geo-

indistinguishability [3], which is based on a generalization of DP [5].

Nonetheless, there is a notable distinction. To put it in terms of

the definition above, in geo-indistinguishability, the region within

which privacy is protected is centered at 𝑥 . In our definition, these

regions are predefined by 𝜑 . As a downside, our privacy guarantee

is limited to the given region rather than fading gradually with

increasing region radius. However, there is also a crucial upside to

2
The solution that results of picking edges randomly in a fully connected bipartite

graph containing all agents and resources.

this subtle difference in real-world applications due to composition

properties. To the best of our knowledge, in spite of conveniently

adopting the use of distances between inputs to adjust levels of

privacy guarantees, geo-indistinguishability has only been proven

to satisfy basic composition. As a result, 𝜀 grows linearly with the

number of privacymechanism invocations. It is not sufficiently tight

for iterative AI and ML applications, which typically require a lot

of repetitive applications of privacy mechanisms [1]. On the other

hand, PLDP allows to use tighter composition theorems developed
for the conventional DP, reducing the growth of 𝜀 from linear w.r.t.

the total number of algorithm iterations 𝑇 to O(
√
𝑇 ) [1].

A second advantage of PLDP is that, contrary to geo- indistin-

guishability, it does not require a metric space (i.e., a natural order-

ing). As an example, this makes PLDP easier to apply in settings

like our paper assignment application where each agent/resource

is represented by a 25-dimensional binary label (see supp.). In this

example, there is ordering in each dimension, but not across them.

3 PALMA: A PRIVACY-PRESERVING
WEIGHTED MATCHING ALGORITHM

3.1 The Assignment Problem
The assignment problem refers to finding amaximum-weightmatch-

ing in a weighted bipartite graph
3
, G = {N ∪ R, E}. In the studied

scenario,N = {1, . . . , 𝑁 } agents compete to acquire R = {1, . . . , 𝑅}
resources. The weight of an edge (𝑛, 𝑟 ) ∈ E represents the utility

(𝑢𝑛 (𝑟 ) ∈ [0, 1]) agent 𝑛 receives by acquiring resource 𝑟 . Each agent

can acquire at most one resource, and each resource can be assigned

to at most one agent. The goal is to maximize the sum of utilities.

For simplicity, in the rest of the paper we assume 𝑁 = 𝑅. This

is not required by PALMA (or ALMA). If 𝑅 > 𝑁 some resources

will remain free, while if 𝑁 > 𝑅 some agents will fail to acquire a

resource (convergence in the latter case implies that the state of

the agent does not change, see [7]).

3.2 Learning Rule
We assume each agent is interested in (potentially) a subset of

the total resources Q𝑛 ⊆ R. Let A = {𝑌,𝐴𝑟1 , . . . , 𝐴𝑟𝑄𝑛 } denote
the set of actions, where 𝑌 refers to yielding, and 𝐴𝑟 refers to

accessing resource 𝑟 . Let 𝑔 denote the agent’s strategy. PALMA

is run independently and in parallel by all the agents. Each agent

converges to a resource through repeated trials, specifically:

As long as an agent has not acquired a resource yet, at every

time-step, there are two possible scenarios: If 𝑔 = 𝐴𝑟 (strategy

points to resource 𝑟 ), then agent 𝑛 attempts to acquire that resource.

If there is a collision
4
, the colliding parties back-off with some

probability, 𝑃𝑛
𝐵
(·). Otherwise, if 𝑔 = 𝑌 , the agent chooses a resource

𝑟 for monitoring according to probability , 𝑃𝑛
𝑆
(·). If the resource is

free, he sets 𝑔← 𝐴𝑟 . The pseudo-code can be found in Alg. 1.

3.2.1 Resource Selection Distribution. In the original ALMA,

each agent sorts the resources in decreasing order of utility (𝑟1, . . . , 𝑟𝑅 ).

3
ALMA (and thus PALMA) can be applied in general graphs as well (see [8]).

4
We assume that agents can observe feedback from their environment to inform

collisions and detect free resources (e.g., by the use of sensors, or by a single bit

feedback from the resource).



Table 1: Nomenclature, Algorithm 1

𝑠 Current step (indicates a specific set R𝑛𝑠 )
𝑔 Specifies which resource to access

{𝑌,𝐴𝑟1 , . . . , 𝐴𝑟𝑅 }
𝑌 refers to yielding, and

𝐴𝑟 refers to accessing resource 𝑟

𝑃𝑛
𝑆
(·) Resource selection probability distribution

𝑃𝑛
𝐵
(·) Back-off probability distribution

𝑐 Accumulated privacy cost

𝑐𝑚𝑎𝑥 Highest possible privacy cost for selection or back-off

𝐵𝑛 Privacy budget

Then, he moves in a sequential manner, starting from the most pre-

ferred resource (𝑟1), and moving down the list until he acquires

one. This method of resource selection results in the highest so-

cial welfare, but it is impossible to guarantee privacy due to the

deterministic nature of the selection process. On the other end of

the spectrum, we can select a resource in a weighted at random

fashion, where resource 𝑟𝑖 is selected with probability
𝑢𝑛 (𝑟𝑖 )∑
𝑟∈R 𝑢𝑛 (𝑟 )

.

This method provides high degree of privacy, but can result in low

social welfare. To elaborate the latter, consider the following ad-

versarial scenario: in a large-scale urban domain (|R | → ∞) where
agents are interested only in resources that are physically close

to them, the majority of resources would have utility ≈ 0. If we

select a resource in a weighted at random fashion, the probability

of selecting a low utility resource would be high – due to the large

number of resources – resulting in low social welfare.

In this work, we combine the aforedescribed two approaches. Let

N𝑛
denote the set of every possible agent that belongs to the same

region of utility space as 𝑛, i.e., N𝑛 = {𝑛′ : 𝑢𝑛′ (·) ∈ D𝑖 ∧ 𝑢𝑛 (·) ∈
D𝑗 ⇒ 𝑖 = 𝑗}. We refer to N𝑛

as the set of neighbors of 𝑛. Note

that the neighbors of an agent do not need to be in N , we account

for every potential agent (i.e., ∪𝑛∈NN𝑛 ⊃ N ). The neighbors are
the set of agents that PLDP guarantees indistinguishability. Then,
each agent𝑛 independently generates the sets (R𝑛

1
, . . . ,R𝑛

𝑖
, . . . ,R𝑛

𝑅
),

where the set R𝑛
𝑖
contains the 𝑖th most preferred resource of each

neighbor, i.e., R𝑛
𝑖
= ∪∀𝑛′∈N𝑛 {𝑟𝑛′

𝑖
}.

Agent 𝑛 moves in a sequential manner from set to set (starting

from the set of the most preferred resources, R𝑛
1
, and looping back

to it after R𝑛
𝑅
). The resource selection is performed in a weighted

at random fashion in the sets R𝑛
𝑖
. Specifically, at step 𝑠 = 𝑡 mod 𝑅,

where 𝑡 is the current time-step, agent 𝑛 will select resource 𝑟𝑖 ∈ R𝑛𝑠
with probability given by (line 18 of Algorithm 1):

𝑃𝑛𝑆 (𝑖, 𝑠, 𝜁𝑆 ) = 𝜁𝑆 × 𝑃WaR (𝑖, 𝑠, 𝑛) + (1 − 𝜁𝑆 ) × 𝑆Noise (𝑖, 𝑠, 𝑛∗) (1)

𝑃WaR (𝑖, 𝑠, 𝑛) =
𝑢𝑛 (𝑟𝑖 )∑

𝑟 ∈R𝑛𝑠 𝑢𝑛 (𝑟 )
(2)

Equation 1 defines a mixture distribution, composed of (a) se-

lecting in a weighted at random fashion using the utilities of agent

𝑛 (𝑃WaR (𝑖, 𝑠, 𝑛), given by Equation 2), and (b) a distribution that

introduces noise (𝑆Noise (·)) to the selection process. 𝜁𝑆 tunes the

magnitude of the introduced randomness.

The introduced noise can be any distribution that is known and

common for all agents (can be domain specific). For example, it

could simply be a uniformly at random selection in the set of re-

sources R𝑛𝑠 . In this work, we take advantage of domain knowledge.

Algorithm 1 PALMA: Privacy-preserving ALtruistic MAtching.

1: Initialize 𝑠 ← 1, 𝑔 ∼ 𝑃𝑛
𝑆
(·), 𝑐 ← 0, 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

2: Calculate 𝑐𝑚𝑎𝑥 according to Equation 6

3: procedure PALMA

4: while !converged do
5: if 𝑔 = 𝐴𝑟 then
6: Agent 𝑛 attempts to acquire 𝑟

7: if Collision(𝑟 ) then
8: if 𝑐 + 𝑐𝑚𝑎𝑥 ≤ 𝐵𝑛 then
9: Back-off (set 𝑔← 𝑌 ) with probability 𝑃𝑛

𝐵
(·)

10: 𝑐 ← 𝑐 + 𝑐𝑚𝑎𝑥

11: else
12: Back-off (set 𝑔← 𝑌 ) with prob. 𝐵Noise (·)
13: else
14: converged← 𝑇𝑟𝑢𝑒

15: else (𝑔 = 𝑌 )

16: 𝑠 ← (𝑠 + 1) mod 𝑅

17: if 𝑐 + 𝑐𝑚𝑎𝑥 ≤ 𝐵𝑛 then
18: Agent 𝑛 monitors 𝑟 ∼ 𝑃𝑛

𝑆
(·)

19: 𝑐 ← 𝑐 + 𝑐𝑚𝑎𝑥

20: else
21: Agent 𝑛 monitors 𝑟 ∼ 𝑆Noise (·)
22: if Free(𝑟 ) then set 𝑔← 𝐴𝑟

23: Output 𝑟 , such that 𝑔 = 𝐴𝑟 , and (𝜀, 𝛿) ← getPrivacy(𝑐) (Eq.4.1)

Specifically, let 𝑛∗ denote a ‘representative’ agent of the Neighbor-
hood of agent 𝑛. This can be for example a(n) (potential) agent

located in the center of the neighborhood in a mobility-on-demand

application. Then, the common distribution (i.e., noise) can be to

play in a uniformly at random manner according to the utility func-

tion of the representative agent, i.e., 𝑆Noise (𝑖, 𝑠, 𝑛∗) = 𝑃WaR (𝑖, 𝑠, 𝑛∗).
In section 3.2.3, we provide a concrete example on the fragmen-

tation of the utility space into neighborhoods, the representative

agent, and the selection and back-off probabilities.

3.2.2 Back-offDistribution. The back-off probability, 𝑃𝑛
𝐵
(·) (line

9 of Algorithm 1), is computed individually and locally based on

each agent’s expected utility loss that he will incur if he switches:

𝑙𝑜𝑠𝑠 (𝑖, 𝑠, 𝑛) = 𝑢𝑛 (𝑟𝑖 ) −
∑︁

𝑟 𝑗 ∈R𝑛𝑠+1

𝑢𝑛 (𝑟 𝑗 )∑
𝑟 ∈R𝑛

𝑠+1
𝑢𝑛 (𝑟 )

𝑢𝑛 (𝑟 𝑗 ) (3)

The actual back-off probability can be computed with any mono-

tonically decreasing function 𝑓 on 𝑙𝑜𝑠𝑠 (·), e.g.:

𝑓 (𝑙𝑜𝑠𝑠) =


1 − 𝛾, if 𝑙𝑜𝑠𝑠 ≤ 𝛾
𝛾, if 1 − 𝑙𝑜𝑠𝑠 ≤ 𝛾
1 − 𝑙𝑜𝑠𝑠, otherwise

(4)

where 𝛾 places a threshold on the minimum / maximum back-off

probability. According to the above distribution, agents that do not

have good alternatives will be less likely to back-off and vice versa.

The ones that do back-off select an alternative resource, according to

the resource selection probability 𝑃𝑛
𝑆
(·), and examine its availability

(line 18 of Algorithm 1). Finally, 𝑃𝑛
𝐵
(·) is given by Equation 5:

𝑃𝑛𝐵 (𝑖, 𝑠, 𝜁𝐵) = 𝜁𝐵 × 𝑓 (𝑙𝑜𝑠𝑠 (𝑖, 𝑠, 𝑛)) + (1 − 𝜁𝐵) × 𝐵Noise (𝑖, 𝑠, 𝑛∗) (5)



Figure 1: A visual representation of the regions ({D𝑖 }) of
PLDP for the mobility-on-demand application. Red dots de-
note the edge points of each region (ℓ = 4000). Orange dots
represent the agents (requests), and blue dots represent the
resources (vehicles) in our dataset. As an example, an agent
in the overlaid rectangle could be located anywhere in the
rectangle from the attacker’s point of view.

The back-off distribution is mixture between acting according to

an agent’s own utility function (𝑓 (𝑙𝑜𝑠𝑠 (𝑖, 𝑠, 𝑛))), and a distribution

that introduces noise (𝐵Noise (·)) to the back-off process. 𝜁𝐵 tunes

the magnitude of the introduced randomness. As was the case with

the selection distribution, the introduced noise for the back-off

distribution can be any distribution that is known and common for

all agents. In this work, we set 𝐵Noise (𝑖, 𝑠, 𝑛∗) = 𝑓 (𝑙𝑜𝑠𝑠 (𝑖, 𝑠, 𝑛∗)), i.e.,
the ‘noise’ distribution refers to backing-off according to the utility

function of the ‘representative’ agent (described in Section 3.2.1).

3.2.3 Elaborative Example on Neighborhoods. In what fol-

lows, along with Section 4.1.1, we will provide an elaborative, prac-

tical example of the key notions of PALMA.

PLDP is used to protect the utility function of agents. Consider

the space of all possible utility functions, and then consider the

space of the images of those utility functions. We fragment the

former into sub-spaces 𝐷𝑖 , such that for two utility functions that

belong to the same 𝐷𝑖 , their image is ‘close’ in distance. In simple

terms this means that the actual utility value of a resource would

be similar for agents with utility functions in the same sub-space

𝐷𝑖 . The fragmentation is performed by 𝜙 (·).
Each agents selects his own 𝜙 (·) based on his privacy needs. The

choice of 𝜙 (·) is public information. For simplicity, in this work,

we assume that every agent has the same 𝜙 (·). The choice of 𝜙 (·)
fragments the space of agents into regions; the image of the utility

function of every agent in a region is close in distance to every

other agent in the same region. The definition of the region (𝜙 (·))
as well as the distance metric are domain specific.

As a concrete example, consider a mobility-on-demand (MoD)

application (e.g., ridesharing). Let the utility of each agent (rideshar-

ing user) be inversely proportional to the distance (in meters) from

the resource (vehicle). In this case, we can split the are of operation

into rectangular regions, as shown in Figure 1; agents in the same

region would have similar utilities for each resource.
5

To compute his neighbors, an agent considers every possible
agent that could belong in his region, regardless if this agent exists.

5
Note that we protect the privacy of the agents, not the resources; thus, the resources

(vehicles) do not need to belong to any region, and can be matched with any agent

regardless of his region.

Expanding on our MoD example, we can consider having an agent

ridesharing user) every, e.g., 10m on the map. In a 10
6
m
2
region,

the neighborhood will include 10
4
agents. Each of these agents has

his own preference (ordering) of resources. Using these preferences,

we can construct the sets R𝑛
1
, . . . ,R𝑛

𝑅
, where the set R𝑛

𝑖
contains

the 𝑖th most preferred resource of each neighbor. The construction

of the neighborhoods needs to be performed once, offline. PLDP

guarantees that each agent is indistinguishable from all his neighbors
(i.e., every potential agent that could exist in his region) from the

attacker’s point of view.

Finally, the ‘representative’ agent of each region can be a ‘virtual’

agent located at the center of the region. Given that 𝜙 (·) is public –
and thus the fragmentation into regions as well – the selection and

back-off distribution of the representative agent is also public and

common for all agents.

3.3 Communication and Computation
Complexity

PALMA (just like ALMA [7]) does not require any inter-agent

communication
4
. The initialization is linear to the size of the region,

O(max𝑖 |D𝑖 |), but this can be done once off-line. The accounting of

the privacy loss is O(1). Finally, PALMA converges in polynomial

time in the general case, and in constant time in the realistic case

where each agent is interested in a subset of the total resources (i.e.,

Q𝑛 ⊂ R) and thus at each resource there is a bounded number of

competing agents (V𝑟 ⊂ N ) (see supplement [9]).

3.4 Privacy Mechanism
PALMA’s defense mechanism is based on the idea of randomized

response [33], and involves adding controlled randomness in (i)

the resource selection and (ii) back-offs, parametrized by 𝜁𝑆 and

𝜁𝐵 , respectively (see Equation 1 and 5). The idea is that the agent

first flips a coin to decide whether to act truthfully. Then, with

probability 𝜁𝑆 (or 𝜁𝐵 ), the agent plays according to its true selection

(or back-off) function; with probability 1 − 𝜁𝑆 (or 1 − 𝜁𝐵 ), the agent
plays according to a public, common distribution.

Moreover, each agent has a privacy budget of 𝜀 = 𝐵𝑛 . Upon

depletion in the course of using the above mechanisms (see lines 8

& 17 of Algorithm 1), the agent will play noisy actions (see lines

12 & 21 of Algorithm 1). Note also that each agent can select the

fragmentation function 𝜑 (·) of PLDP and adjust the size of the

neighborhood N𝑛
according to his privacy needs.

4 PRIVACY ACCOUNTING
Since PALMA is an iterative algorithm, we need to compute (𝜀, 𝛿)
guarantees over multiple applications of the privacy mechanism.

This can be done via privacy accounting methods (e.g., [15]). We

employ the accounting framework introduced in [32] and extend it

to generic subsampled mechanisms. While developed for the notion

of Bayesian DP, this framework is applicable to the traditional DP as

well, and in such a case, is equivalent to the moments accountant [1]

for the subsampled Gaussian mechanism and Rényi accountant [21].

Let us briefly outline the method.

Let 𝜎𝑡 and 𝜎 ′𝑡 denote signals sent by agents 𝑥 and 𝑥 ′ in time-

step 𝑡 , and 𝜉𝑡 any auxiliary information. A set of signals (auxiliary

information) sent in time-steps 1 through𝑇 is denoted by 𝜎1:𝑇 (𝜉1:𝑇 ).



In the context of PALMA, these signals represent either an attempt

to acquire a resource, or a back-off from a previously contested

resource
6
, while the auxiliary information corresponds to 𝑠 (which

determines the set of resources R𝑠 , see Equation 1, 5). Following

[32], we also introduce the notion of privacy cost:

𝑐𝑡 (𝜎𝑡 , 𝜉𝑡 , 𝑥, 𝑥 ′, 𝜆) ≜ max

{
𝜆D𝜆+1 [𝑝 (𝜎𝑡 |𝜉𝑡 , 𝑥)∥𝑝 (𝜎𝑡 |𝜉𝑡 , 𝑥 ′)]
𝜆D𝜆+1 [𝑝 (𝜎𝑡 |𝜉𝑡 , 𝑥 ′)∥𝑝 (𝜎𝑡 |𝜉𝑡 , 𝑥)]

where D𝜆 (·∥·) is the Rényi divergence of order 𝜆 (see [9]).

4.1 PALMA’s Privacy Cost
Every matching game starts with a fresh set of agents with random

identifiers. Each agent computes (once, and off-line) the highest

possible privacy cost at any round (𝑐𝑚𝑎𝑥 ), i.e., the maximum value

between the worst possible privacy cost during resource selection

and back-off:

𝑐𝑚𝑎𝑥 = max


max

𝜉𝑡 ∈{1,...,𝑅 }
max

𝑥 ′∈N𝑥
max

𝜎𝑡 ∈R𝑥𝜉𝑡 ∼𝑃
𝑛
𝑆
( ·)

𝑐𝑡 (·)

max

𝜉𝑡 ∈{1,...,𝑅 }
max

𝑥 ′∈N𝑥
max

𝜎𝑡 ∈R𝑥𝜉𝑡 ∼𝑃
𝑛
𝐵
( ·)

𝑐𝑡 (·)
(6)

The agents do not change their utilities during the matching

process (i.e., the distributions 𝑃𝑛
𝑆
(·) and 𝑃𝑛

𝐵
(·) stay fixed), thus each

agent can compute a priori the total privacy cost (worst case privacy
guarantees) and themaximumnumber of rounds until the budget𝐵𝑛
is exhausted and he has to play according to the noise distributions.

Agents can then adjust their privacy parameters accordingly. The

actual privacy loss is accounted on the fly during execution (see

lines 10 and 19 of Algorithm 1).

To bound the total privacy loss over multiple rounds and com-

pute 𝜀 from 𝛿 or vice versa, we can use an advanced composi-

tion theorem. As stated, the advanced compositions theorem for

the Bayesian accountant [32], the moments accountant [1] and

the Rényi accountant [21] are equivalent in this case, resulting in:

log𝛿 ≤
𝑇∑︁
𝑡=1

𝑐𝑚𝑎𝑥 (·) − 𝜆𝜀 𝜀 ≤ 1

𝜆

𝑇∑︁
𝑡=1

𝑐𝑚𝑎𝑥 (·) −
1

𝜆
log𝛿

It is important to note that the above 𝜀 and 𝛿 should not be

published, since the agent uses his own utility function to calculate

the cost (in Equation 6).

4.1.1 Elaborative Example on the Privacy Cost Calculation.
In this section we expand on our practical example on MoD systems

introduced in Section 3.2.3.

Recall that PLDP provides Local DP guarantee, meaning a bound

on the outcome probabilities for any pair of individual agents,

inside the region. As such, to compute the privacy cost per round,

each agent 𝑛 has to identify the neighbors that would result to the

maximum privacy loss (i.e., their selection (back-off) distributions

result in the largest Rényi divergence, see Equation 6). Thus, each

agent 𝑛 independently identifies two agents 𝑛′, and 𝑛′′ from his
neighborhood that result in the worst privacy loss given the agent’s

selection and back-off distributions (Equation 1 and 5, respectively).

Then, he can compute the worst case privacy loss in any round by

taking the maximum of the two values (Equation 6). Using this

information, each agent is able to (i) compute his total privacy cost

6
In an arbitrary domain, the signal would correspond to an action of an agent.
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Figure 2: Request per minute in Manhattan on Jan. 15, 2016.
Vertical lines denote the selected evaluation instances.

a priori and adjust his privacy parameters accordingly, (ii) keep

track of his privacy budget at every time-step, and (iii) calculate his

total 𝜀 after convergence. This process needs to happen once, offline.
As mentioned, each agent can adjust the size of the neighborhood

N𝑛
(e.g., length ℓ , see Section 6.2) according to his privacy needs.

5 EVALUATION
We evaluate PALMA in a mobility-on-demand and a paper assign-
ment application, using real-data for both. We focus on the social

welfare (sum of utilities,

∑
𝑛∈N 𝑢𝑛 (·)) and level of privacy (𝜀 given

𝛿 = 10
−5
). Each problem instance is run 32 times. We report the

average value for the social welfare, the average value for the me-

dian of 𝜀, and the maximum value of 𝜀. Error bars represent one

standard deviation. We set 𝜁𝑆 = 0.2, 𝜁𝐵 = 𝛾 = 0.05, 𝐵𝑛 = 1, 𝜆 = 32.

6 TEST-CASE 1: MOBILITY-ON-DEMAND
6.1 Motivation
The emergence and widespread use of mobility-on-demand (MoD)

services (e.g., ridesharing platforms like Uber or Lyft) in recent years

has had a profound impact on urban transportation. Normally the

process is facilitated by a centralized operator, that requires accu-

rate location information of passengers and vehicles, which raises

privacy concerns. Such a problem is ideal to showcase PALMA, as

explained in Section 2.1. Moreover, contrary to other approaches

(e.g., [16, 22]) PALMA is decentralized and employs Local DP, pro-
viding privacy against a malicious data curator.

The Ridesharing and Fleet Relocation problem can be decom-

posed into three weighted matching sub-problems, all of which can

be solved efficiently by ALMA [8] (and thus by PALMA as well). In

this test-case we will focus on passenger to vehicle matching, using

PLDP and PALMA to provide a scalable, on-device, decentralized
solution that protects user preferences (user location in this context).

6.2 Setting
Our evaluation setting is specifically designed to resemble reality as
closely as possible, following the modeling of [8]. We have used the

NYC yellow taxi trip records [28]. For every request, the dataset

provides amongst others the geo-location coordinates.

We report results on four 30s instances on a typical day (Jan 15th).

These instances were selected to represent various distributions of

demand (see Figure 2): the two highest peaks, the lowest peak, and

a mid-day low
7
. We selected 30s periods because in practice the

granularity of in-batches approaches for MoD services is between
8

7
Specifically, 05:00:00 - 05:00:30 represents the lowest demand, 08:00:00 - 08:00:30

and 19:00:00 - 19:00:30 represent the two rush hours (in the morning and evening,

respectively), and finally, 11:00:00 - 11:00:30 represents a mid-day low.

8
We also ran the same instances in batches of 10s and obtained better results (in terms

of social welfare), but opted to present the worst case.



10s to 30s [2, 8, 22, 23]. It is important to stress this does not affect
the scalability of the proposed approach. Running PALMA for a day,

for example, would simply result in running 24 × 60 × 2 batches
(as was done in [8]). Assuming similar distributions for requests

and vehicles
9
, the social welfare and privacy cost of each agent will

remain approximately the same, since the privacy cost (Equation 6)

only depends on the size of the region D𝑖 .

The set of agents N is composed by the requests in Manhattan

(17, 154, 116, and 174 requests in total on each of the evaluated

batches). The set of resources R includes an equal number of vehi-

cles scattered across the map. To avoid cold start, the position of

each of the vehicles was set to the drop-off geo-location of the last

(prior to the start time of the simulation) 𝑥 requests (where 𝑥 is the

number of vehicles in each case). We used the Manhattan distance

as a distance function (using the Haversine formula
10

to calculate

the distance in each coordinate), as it has been found to be a close

approximation of the actual driving distance in Manhattan [8]. The

utility function is 𝑢𝑛 (𝑟 ) = 𝑒−
𝑑 (𝑛,𝑟 )

𝛼 , where 𝛼 = 4000 controls the

steepness and 𝑑 (𝑛, 𝑟 ) denotes the distance between agent 𝑛 and re-

source 𝑟 (in m). We opted to use an exponential function to enable

short pick-up times, as research conducted by ridesharing compa-

nies shows that a short pick-up time is important for passengers’

satisfaction [4, 27].

The map is divided into fixed square regions of edge length ℓ

(which correspond to theD𝑖 ). PLDP demands that a user is indistin-

guishable, from the attacker’s point of view, from any potential user

that could exist in the same region
11

(i.e., all his neighbors, see Sec-

tions 3.2.1 and 3.2.3). We have evaluated ℓ ∈ {1000, 2000, 3000, 4000}
m, which roughly correspond to an area of {45.6, 182.5, 410.5, 730}
city blocks

12
. Figure 1 offers a visual representation of the setting.

6.3 Baselines
We employ the centralized Hungarian algorithm [19] to compute

the non-private maximum-weight – i.e., optimal in terms of social

welfare – solution, which we use to compare the loss in social

welfare of all of the evaluated algorithms. We compare PALMA

against three privacy-preserving baselines:

(1) The Hungarian algorithm [19] – which is an optimal assign-

ment centralized algorithm – made private by obfuscating

(adding noise) the geo-location coordinates according to geo-

indistinguishability [3] (similarly to [22]).

(2) The original ALMA [7] under similarly obfuscated (noisy)

geo-location coordinates
13
.

(3) The maximally private solution (i.e., the centralized random).

For the geo-indistinguishability-based baselines, we calculated

a noisy geo-location for each agent and resource, according to

Algorithm 2, which can be found in the supplement [9].

9
A reasonable assumption given that our choice of evaluated distributions covers all

the extremes, and a typical mid-day demand.

10
https://en.wikipedia.org/wiki/Haversine_formula

11
We assume that potential neighbors are 100m apart in every direction.

12
The standard city block in Manhattan is about 80 m × 274 m (https://en.wikipedia.

org/wiki/City_block).

13
Note that we also attempted to use the original ALMAwith Local Differential Privacy,

yet, due to the large problem size, the privacy budget only sufficed for one round.
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Figure 3: Loss in SW compared to the non-private, optimal
solution for increasing region edge length (ℓ) and 𝜀 = 1. The
dotted lines represent the upper (𝜀 → ∞) and lower (𝜀 = 0)
bound for PALMA, while the shaded area adds one standard
deviation to the aforementioned bounds (see Section 6.4).

6.4 Simulation Results: Social Welfare
For 𝜀 = 𝐵𝑛 = 1 given 𝛿 = 10

−5
(Figure 3), PALMA loses between

13.9 ± 4.1% (ℓ = 1000) to 31.7 ± 3.6% (ℓ = 4000) in social welfare

compared to the non-private, optimal solution. The dotted lines

represent the upper and lower bound; the upper bound assumes in-

finite budget (𝐵𝑛 →∞) thus the agents play according to their own
utilities (𝜁𝑆 = 𝜁𝐵 = 1), while the lower bound assumes zero budget

(𝐵𝑛 = 0) thus the agents play according to the noise distribution

(𝜁𝑆 = 𝜁𝐵 = 0), i.e., according to the utilities of the representative

agent. The shaded area adds one standard deviation to the afore-

mentioned bounds.

For the same 𝜀 guarantee and the same length as the privacy

diameter, Hungarian + geo-ind loses between 20.2 ± 4.2% to 43.7 ±
4.3%, while ALMA + geo-ind loses between 26.1±3.5% to 47.1±4.5%.
Finally, the maximally private solution (i.e., the centralized random),

losses 49.4 ± 2%.
PLDP and the carefully crafted noise of PALMA, allows PALMA

to outperform even the centralized optimal solution (Hungarian +

geo-ind) by 27.6% (ℓ = 4000) to 30.9% (ℓ = 1000). In fact, if we

increase the privacy requirement to 𝜀 = 0.75, the improvement

increases to 31.3% (ℓ = 4000) to 45.9% (ℓ = 1000). Note that, besides

the higher social welfare for the same privacy guarantee, PALMA

is inherently decentralized and orders of magnitude faster than the

Hungarian.

6.5 Simulation Results: Privacy
While the worst-case guarantee is the same across the evaluated

methods, PALMA yields a stronger result on a per-agent basis. In

PALMA, every agent has a budget 𝜀 = 𝐵𝑛 and can compute a priori

the maximum number of rounds until the budget is exhausted and

he has to play according to the noise distributions (see Section 4.1).

During runtime, though, most agents converge in a few rounds (i.e,

few privacy mechanism invocations), thus accumulating smaller

privacy loss compared to geo-ind based methods.

To demonstrate the latter, Figure 4 depicts the maximum (out

of all the 32 runs) and median (average median value over the 32

https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/City_block
https://en.wikipedia.org/wiki/City_block
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Figure 5: Histogram of per-agent 𝜀 for varying privacy region
edge length. We include all 32 runs (32 (runs) × (17 + 154 +
116 + 174) (agents) = 14752 data points).

runs) per-agent 𝜀 for increasing values of privacy region length ℓ .

PALMA is able to achieve a strong level of privacy even in large-

scale simulations. The average value of the median for ℓ = 1000 is

only 0.5. Of course, the maximum per-agent 𝜀 is bounded by the

privacy budget (i.e., 𝜀 = 1). Recall that ℓ = 1000 m corresponds to

an area of 45.6 city blocks, and ℓ = 4000 m is larger than the width

of Manhattan (which is 3700 m wide at its widest).

Figure 5 plots the histogram of the per-agent 𝜀 for varying pri-

vacy region edge length (ℓ). For ℓ = 1000 (Figure 5a), only 3572 out

of 14752 agents (24.2%) have 𝜀 > 0.75. This is because the majority

of the agents converge fast [7], thus only a small percentage of them

exhaust their budget. In fact, almost half of the total agents (6759 /

14752, or 45.8%) have 𝜀 ≤ 0.5. It is clear that the vast majority of

agents benefit from really high degree of privacy.

6.6 Regions, Representative Agents, and Noise
In addition to the advantages of PLDP described in Section 2.3, there

is another, more practical advantage that stems from the use of

domain knowledge. The fragmentation function 𝜙 (·) and the choice
of the representative agent per region are domain specific. If the

problem at hand (and by extension the utility function of the par-

ticipating agents) is such that the representative agent has similar

utilities to other agents in the region (and if we properly select the

correct representative agent so that he is indicative of the agents

in the region), then the social welfare will not degrade much, even

under really strict budgets. Acting according to the representative

agent, in such cases, allows for more informed allocations. This is a

fundamental difference compared to, e.g., geo-indistinguishability,

where the social welfare degrades in a significantly higher rate

(as demonstrated in Figure 3). The latter can also be important for

outlier agents, whose privacy cost per round might be high and

thus lack the budget to play according to their own utilities for

many rounds.

Regarding the choice of the fragmentation function 𝜙 (·), there
is a clear trade-off between the region size and the privacy cost

per round, which in turn informs the amount of noise (𝜁𝑆 and

𝜁𝐵 ). Restricting our privacy guarantees to a region helps reduce

the required noise, since all the agents in a region have similar

preferences (less noise is needed to become indistinguishable). If

the privacy cost per round is small, an agent can afford lower noise

(larger 𝜁𝑆 and 𝜁𝐵 ). Alternatively, acting according to the utilities

of a properly chosen representative agent will still result in high

quality allocations (especially in smaller regions, e.g., ℓ = 1000),

thus an agent might choose to accept higher noise in order to end

up with much lower privacy cost at the end.

Finally, while in this work 𝜁𝑆 and 𝜁𝐵 are the same for all agents

(see Section 5), one can potentially achieve better results using

adaptive noise. For example, agents can assume lower noise for

the first few time-steps, and gradually increase it over time. Note,

that the noise selection scheme must not depend on the agents’

preferences. We leave this open for future work.

7 TEST-CASE 2: PAPER ASSIGNMENT
We ran a second test-case (see supplement [9]), where we use PLDP

and PALMA to protect the reviewers’ preferences during the paper

assignment phase of a conference, using real data form [18]. PALMA

achieved similar results: loss in social welfare < 22% (the maximally

private solution loses 71.5%); 𝜀 ≤ 1 and a median value of 0.36.

8 CONCLUSION
Bridging the gap between physical and cyber worlds will bring

about significant privacy risks and the potential to reveal highly sen-

sitive information of users. In this paper, we consider the problem

of hiding the utility function in multi-agent coordination problems.

We propose PALMA, a practical and scalable privacy-preserving al-

gorithm for weighted matching along with PLDP, a ‘context-aware’

privacy model that takes into account the ‘distance’ between two

utility functions. This ensures indistinguishability between agents

with similar preferences. PALMA is decentralized, runs on-device,

requires no inter-agent communication, converges in constant time

under reasonable assumptions, and provides a strong level of pri-
vacy (𝜀 ≤ 1 and median as low as = 0.5), while achieving high

quality matchings (up to 86% of the non-private optimal). To the

best of our knowledge, we are the first to develop a practical and

scalable framework for weighted matching and resource allocation

in general, unboundedly large, multi-agent systems.

Supplementary Material. Please see [9] for an intuitive expla-

nation of Differential Privacy with examples, implementation and

complexity details, additional simulation results, and more.
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A CONTENTS
In this supplementary material we include several details that have
been omitted from the main text due to space limitations. In partic-
ular:

- In Section B we explain the traditional Differential Privacy
definition.

- In Section C we provide the definition for the Rényi diver-
gence.

- In Section D we provide additional implementation and com-
plexity details on PALMA.

- In Section Fwe provide some additional details on themobility-
on-demand test-case.

- In Section G we present the paper assignment test-case.
- Finally, in Section H we shortly discuss the limitations of the
proposed approach, and in Section I the societal impact.

For narrative purposes, parts of the text of the main paper are
repeated.

B DIFFERENTIAL PRIVACY DEFINITION
In this section we provide a short description of the traditional
Differential Privacy (DP) definition; [4–6] we refer the interested
reader to [7, 12] for a more comprehensive overview of Differential
Privacy and Differential Privacy mechanisms.

Differential privacy is often discussed in the context of identify-
ing individuals whose information may be in a database. It relies on
an important impossibility result: impossibility of absolute disclo-
sure prevention. The authors of [4–6] prove that the conventional
requirement of statistical database privacy – access to a database
should not allow an adversary to learn additional information about
an individual than what could be learned without such access –
cannot be achieved due to auxiliary information available to the
adversary (besides the access to the database). As such, the authors
argue to switch from absolute privacy guarantees to relative ones:
informally, differential privacy captures the increased risk to an
individual’s privacy incurred by participating in a database. An
algorithm is then considered differentially private if an adversary
can not infer if a particular individual’s information was used in
the computation, given the output of said algorithm.

In order to achieve differential privacy, one needs a source of
randomness. Let M : D → A be a random function, mapping
sensitive inputs from domain D to range A of privatized (or sani-
tized) outputs. In the context of matching problems in multi-agent
systems, D can be the space of utility functions, and A the action
space. Definition 1 defines a relaxation of differential privacy, called

Approximate Differential Privacy or (𝜀, 𝛿)-Differential Privacy [7],
which is more often used in artificial intelligence (and machine
learning).

Definition 1 ((𝜀, 𝛿)-Differential Privacy). A randomized function
(algorithm) M : D → A with domain D and range A satisfies
(𝜀, 𝛿)-differential privacy if for any two adjacent inputs 𝐷,𝐷 ′ ∈ D
and for any set of outcomes S ⊂ A the following holds:

Pr [M(𝐷) ∈ S] ≤ 𝑒𝜀 Pr
[
M(𝐷 ′) ∈ S

]
+ 𝛿.

B.1 Intuitive Example
In what follows, we provide some intuition on the interpretation of
the (𝜀, 𝛿) values (glossing over some of the technical details).

Imagine a simple, stripped-down example where there is only
one agent 𝑛, and two resources 𝑟1 and 𝑟2. Suppose that agent 𝑛
prefers resource 𝑟1, i.e., 𝑢 (𝑟1) > 𝑢 (𝑟2). Under no regard for privacy,
the optimal strategy for 𝑛 is to acquire resource 𝑟1. However, an
outsider observing his action will immediately know agent 𝑛’s
preference. To protect privacy under DP, the agent will randomize
its decisions by flipping a coin. Depending on the result (heads or
tails), agent 𝑛 would acquire either resource 𝑟1 or 𝑟2, respectively.
Now the observer can not know if the decision was taken based
on the agent’s actual preference, or due to the coin toss (plausible
deniability). If the coin is unbiased it is easy to see that agent 𝑛’s
preference is completely lost in the randomness and privacy is fully
protected, but there is no utility benefit compared to a random
allocation. This corresponds to 𝜀 = 0. To increase the utility of the
allocation, we will bias the coin towards the preferred resource 𝑟1.
Landing on heads is now more probable than landing on tails, and
the ratio 𝑃𝑟 [heads]/𝑃𝑟 [tails] is greater than 1; 𝜀 is the logarithm
of this ratio. The DP literature also refers to 𝜀 as privacy budget.
Finally, imagine that sometimes the agent fails to flip a coin and just
goes for the preferred resource. 𝛿 refers to this failure probability
(typically very small). In other words, an (𝜀, 𝛿)-Differentially Private
algorithm provides a privacy guarantee 𝜀 with probability (1 − 𝛿).
As such, the pair of these two values fully characterizes the privacy
guarantee.



C RÉNYI DIVERGENCE DEFINITION
The Rényi divergence of order 𝜆 is defined as [12]:

D𝜆 (𝑃 ∥𝑄) =
1

𝜆 − 1
logE𝑝

[(
𝑝 (𝑥)
𝑞(𝑥)

)𝜆−1]
𝑑𝑥 (1)

=
1

𝜆 − 1
logE𝑞

[(
𝑝 (𝑥)
𝑞(𝑥)

)𝜆]
𝑑𝑥, (2)

where 𝜆 is a hyper-parameter (assume for simplicity 𝜆 ∈ N).
Analytic expressions for Rényi divergence exist for many com-

mon distributions and can be found in [8]. [13] provides a good
survey of Rényi divergence properties in general.

Note that since our selection and back-off distributions are mix-
tures of two categorical distributions (see Equations (1) and (5) of
the main text), it is simple to compute the Rényi divergence.

D PALMA: A PRIVACY-PRESERVING
MAXIMUM-WEIGHT MATCHING
HEURISTIC

D.1 Bounding the Set of Desirable Resources
An important characteristic of many real-world applications is that
there is typically a cost associated with acquiring a resource. As a
result, each agent is typically interested in a subset of the total re-
sources, i.e.,Q𝑛 ⊂ R. For example, a taxi driver would not bewilling
to drive to the other end of the city to pick up a low fare passenger,
a driver would not be willing to charge his vehicle at a station in
a different part of the city, and a reviewer would not be willing to
review a paper outside his scope of expertise. This results in faster
convergence (constant time, see Section D.2), but can also poten-
tially lead to higher social welfare1. The sets (R𝑛

1 , . . . ,R
𝑛
𝑖
, . . . ,R𝑛

𝑅
)

can be contracted in the same manner as before.

D.2 Convergence
Theorem 2.1 of [3] proves that PALMA converges in polynomial
time. In fact, under the aforementioned assumption that each agent
is interested in a subset of the total resources (i.e., Q𝑛 ⊂ R) and thus
at each resource there is a bounded number of competing agents
(V𝑟 ⊂ N ) Corollary 2.1.1 of [3] proves that the expected number of
steps any individual agent requires to converge is independent of
the total problem size (i.e., 𝑁 and 𝑅). In other words, by bounding
these two quantities (i.e., we consider |Q𝑛 |, |V𝑟 | to be constant
functions of 𝑁 , 𝑅), the convergence time is constant in the total
problem size 𝑁 , 𝑅.

The initialization of PALMA is linear to the size of the region,
O(max𝑖 |D𝑖 |), but this can be done once off-line. Finally, the ac-
counting of the privacy loss is O(1).

E COMPUTATIONAL RESOURCES
All the simulations were run on a laptop equipped with an Intel
i7-6820HQ CPU at 2.70GHz with 32.0 GB of RAM.

1The agent will loop back to R𝑛
1 , increases his chances of winning a high utility

resources, instead of moving through a large number of undesirable resources.

F TEST-CASE 1: MOBILITY ON DEMAND
F.1 Setting
In the ridesharing scenario, we face repeated weighted matching
problems; after a driver drops off a passenger, he is matched with a
new one. Usually the matching process is performed in batches (e.g.,
every 10s). Assuming there is no vehicle relocation between the last
drop off and the next match, we might have information leakage on
the drop off location of the last passenger. To avoid this problem, we
can use one-time ids for both the taxis and the passengers in every
match, since both sets change dynamically anyway. Note that this
problem is only relevant in this domain; other applications, like the
paper assignment problem, are not susceptible to this vulnerability.

G TEST-CASE 2: PAPER ASSIGNMENT
G.1 Setting
In this test-case, we protect the reviewers’ preferences during the
paper assignment phase of a conference. We used the multi-aspect
review assignment evaluation dataset [9]. It contains 73 papers
(which corresponds to the set of resources R in our setting) from
the ACM SIGIR conference of 2007, and 189 prospective reviewers
(which corresponds to the set of agents N ) composed by authors
of published papers in the top information retrieval conferences
between 1971-2006. Each paper and each reviewer is represented
by a 25-dimensional binary label, representing one of the 25 major
areas of ACM SIGIR [10].

We used the 25major areas to define the privacy regions. Specifi-
cally, for each reviewer and paper, we selected uniformly at random
one of the subject areas that they belong to, and set it as the primary
subject area. The primary subject area is unique, and identifies the
region. The proposed Piecewise Local Differential Privacy demands
that users belonging to the same region be indistinguishable from
the attacker’s point of view. This would correspond to reviewers
with the same primary subject area. We refer to the remaining sub-
ject areas as secondary. The maximum number of secondary subject
areas of any adversary in a region defines the range of that region
(reviewers are indistinguishable in that range). In this test-case,
we consider adversaries with at most 2, 3, and 4 additional subject
areas2. In layman’s terms, a reviewer would be indistinguishable
from any other reviewer that has the same primary subject area,
and is an expert in at most 3, 4, and 5 areas in total.

Finally, for each paper and reviewer, we convert the 25-dimensional
binary label to a continuous-valued vector. Specifically, the primary
subject area is assigned the value 1, all the secondary subject areas
are assigned the value 0.5, and the rest of the areas are assigned
the value 0.1. The latter reflects the fact that conferences trust the
expertise of reviewers to asses the quality of papers in a broader
area. Following the literature [1], we used the cosine similarity
(Equation 3) of their label vectors to compute the utility of a paper
to a reviewer.

𝑢𝑛 (𝑟 ) =
®𝑛 · ®𝑟

∥®𝑛∥∥®𝑟 ∥ (3)

2This would correspond to cosine distance of ≤ 0.2, ≤ 0.25, and ≤ 0.3, respec-
tively, from an agent that has a single subject area; the primary subject area of the
corresponding region



Algorithm 1Method for obfuscating the geo-location coordinates of agents and resources (based on [2]).
Obfuscating geo-location (𝑙𝑎𝑡, 𝑙𝑜𝑛) by drawing a point (𝑟, 𝜃 ) from a polar Laplacian

1. Draw 𝜃 uniformly in [0, 2𝜋)
2. Draw 𝑝 uniformly in [0, 1) and set 𝑟 = 𝐶−1

𝜖 (𝑝), where 𝐶−1
𝜖 (𝑝) = − 1

𝜖

(
𝑊−1 ( 𝑝−1𝑒 ) + 1

)
, 𝜖 = 𝜀

𝑙/2 ,
𝑙 is the privacy region’s diameter, and𝑊−1 (·) is the Lambert W function (the -1 brunch).
3. Set 𝑑𝑥 = 𝑟 cos(𝜃 ) and 𝑑𝑦 = 𝑟 sin(𝜃 )
4. Set 𝑙𝑎𝑡 = 𝑙𝑎𝑡 + (𝑑𝑦 × 0.00000899) and 𝑙𝑜𝑛 = 𝑙𝑜𝑛 + (𝑑𝑥 × 0.00000899)/cos(𝑙𝑎𝑡 × 𝜋/180),
where 0.00000899 is one meter in degrees, calculated as 1 over the earth’s radius in meters.
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Figure 1: Loss in social welfare compared to the non-private,
optimal solution for increasing size of the privacy region
(i.e., number of subject areas).

where ®𝑛 (®𝑟 ) denotes the 25-dimensional label of agent 𝑛 (resource
𝑟 ).

Note that in a real-world paper assignment scenario, each re-
viewer would be required to review more than one paper (i.e., our
matching graph would be a bipartite hypergraph). This can be easily
handled by PALMA. Specifically, each reviewer will be represented
by 𝑥 ‘copies’, where 𝑥 is the number of papers each reviewer should
review. Then, a resource (paper) would only signal agent 𝑛 that it
is free (line 20 of Algorithm 1 of the main text) if (i) it has been
assigned to less than 𝑦 agents – where 𝑦 represents the number of
reviews per paper – and (ii) a ‘copy’ of agent 𝑛 has not acquired
the resource. Nevertheless, this is out of the scope of this paper;
the goal of this test-case is to provide additional evidence on the
performance of PALMA on real data. Thus, we opted to assign each
reviewer to only one paper.

G.2 Baselines
As before, we employ the centralized Hungarian algorithm [11]
to compute the non-private optimal – in terms of social welfare
– solution, which we use to compute the loss in social welfare of
PALMA. Note that in this test-case we do not compare to any geo-
indistinguishability [2] baselines because geo-indistinguishability
is not directly applicable in this domain and modifying it to fit
the domain is out of the scope of this paper. To the best of our
knowledge, there is no other privacy preserving weighted matching
algorithm to compare to.

We set 𝜁𝑆 = 0.1, 𝜁𝐵 = 𝛾 = 0.05, 𝐵𝑛 = 1, 𝜆 = 32.
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Figure 2: Maximum (orange line) and median (blue line) per-
agent 𝜀 for increasing values of the size of the privacy region
(i.e., number of subject areas).

G.3 Simulation Results: Social Welfare
For 𝜀 = 1 given 𝛿 = 10−5 (Figure 1), PALMA loses between 21.1 ±
1.8% to 21.9±1.8% in social welfare compared to the non-private, op-
timal solution. The maximally private solution (i.e., the centralized
random), losses 71.6 ± 2.5%.

Contrary to the Mobility-on-Demand test-case, we observe a
drop in social welfare. This is because in this test-case the number
of agents is 2.6 times bigger than the number of resources (189
reviewers vs. 73 papers in the dataset). As a result, the majority
of the reviewers remain un-matched. This does not constitute a
problem for the centralized Hungarian, since it can compute a
maximum-weight matching. Yet, in a randomized algorithm like
PALMA, having an agent randomly back-off can lead to a drop
in solution quality, as the majority of them will end up without a
resource (i.e., zero reward). This is also reflected in the dramatic
drop in social welfare of the random solution, which now losses
71.6% compared to the 49.4% loss in the Mobility-on-Demand test-
case. This also suggests that in a real-world setting, where the
number of papers is actually larger than the number of reviewers,
PALMA will be able to close the gap in social welfare compared to
the optimal solution.

G.4 Simulation Results: Privacy
Figure 2 depicts the maximum (out of all the 32 runs) and median
(average median value over the 32 runs) per-agent 𝜀 for increasing
values of the size of the privacy region (i.e., number of additional
subject areas). The average value of the median is 0.36. Only be-
tween 0.9 − 2.1% of the agents have 𝜀 > 0.75 (for the three privacy
regions cases). The maximum per-agent 𝜀 is bounded by the privacy
budget (i.e., 𝜀 = 1).



H LIMITATIONS
In the extreme scenario where an adversary has enough background
knowledge to narrow down his search to two agents that belong to
different neighborhoods then, if he can figure out the neighborhood
of his target, he can figure out the targeted agent. Yet, this scenario
is unlikely, and it is more of a question on how to design regions in
a way that the aforementioned problems are avoided.

I SOCIETAL IMPACT
The rapid proliferation of intelligent systems and autonomous
agents has the potential to positively impactmany facets of our daily
lives. However, harnessing their power requires massive amounts
of personal data to be collected, stored, processed, and analyzed
– often by resource-constrained devices. The latter has raised se-
rious privacy concerns and has resulted in an accelerated growth
of privacy advocacy movements. Our work shows that harnessing
the potential of intelligent systems does not have to compromise
privacy.
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