
Improved Cooperation by Exploiting a Common Signal
Learning Temporal Conventions for Sustainable Appropriation of Common-Pool Resources

Panayiotis Danassis

École Polytechnique Fédérale de

Lausanne (EPFL)

Artificial Intelligence Laboratory

Lausanne, Switzerland

panayiotis.danassis@epfl.ch

Zeki Doruk Erden

École Polytechnique Fédérale de

Lausanne (EPFL)

Artificial Intelligence Laboratory

Lausanne, Switzerland

zeki.erden@epfl.ch

Boi Faltings

École Polytechnique Fédérale de

Lausanne (EPFL)

Artificial Intelligence Laboratory

Lausanne, Switzerland

boi.faltings@epfl.ch

ABSTRACT
Can artificial agents benefit from human conventions? Human so-

cieties manage to successfully self-organize and resolve the tragedy

of the commons in common-pool resources, in spite of the bleak pre-

diction of non-cooperative game theory. On top of that, real-world

problems are inherently large-scale and of low observability. One

key concept that facilitates human coordination in such settings is

the use of conventions. Inspired by human behavior, we investigate

the learning dynamics and emergence of temporal conventions,

focusing on common-pool resources. Extra emphasis was given in

designing a realistic evaluation setting: (a) environment dynamics

are modeled on real-world fisheries, (b) we assume decentralized

learning, where agents can observe only their own history, and (c)

we run large-scale simulations (up to 64 agents).

Uncoupled policies and low observability make cooperation hard

to achieve; as the number of agents grow, the probability of taking a

correct gradient direction decreases exponentially. By introducing

an arbitrary common signal (e.g., date, time, or any periodic set

of numbers) as a means to couple the learning process, we show

that temporal conventions can emerge and agents reach sustainable
harvesting strategies. The introduction of the signal consistently

improves the social welfare (by 258% on average, up to 3306%), the

range of environmental parameters where sustainability can be

achieved (by 46% on average, up to 300%), and the convergence

speed in low abundance settings (by 13% on average, up to 53%).
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1 INTRODUCTION
The question of cooperation in socio-ecological systems and sustain-
ability in the use of common-pool resources constitutes a critical

open problem. Classical non-cooperative game theory suggests that

rational individuals will exhaust a common resource, rather than
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sustain it for the benefit of the group, resulting in the ‘the tragedy

of the commons’ [17]. The tragedy of the commons arises when it

is challenging and/or costly to exclude individuals from appropriat-

ing common-pool resources (CPR) of finite yield [37]. Individuals

face strong incentives to appropriate, which results in overuse and
even permanent depletion of the resource. Examples include the

degradation of fresh water resources, the over-harvesting of timber,

the depletion of grazing pastures, the destruction of fisheries, etc.

In spite of the bleak prediction of non-cooperative game theory,

the tragedy of the commons is not inevitable, though conditions

under which cooperation and sustainability can be achieved may

be more demanding, the higher the stakes. Nevertheless, humans

have been systematically shown to successfully self-organize and

resolve the tragedy of the commons in CPR appropriation problems,

even without the imposition of an extrinsic incentive structure [36].

E.g., by enabling the capacity to communicate, individuals have

been shown to maintain the harvest to an optimal level [6, 37].

Though, communication creates overhead, and might not always

be possible [44]. One of the key findings of empirical field research

on sustainable CPR regimes around the world is the employment of

boundary rules, which prescribe who is authorized to appropriate

from a resource [36]. Such boundary rules can be of temporal na-

ture, prescribing the temporal order in which people harvest from

a common-pool resource (e.g., ‘protocol of play’ [3]). The afore-

mentioned rules can be enforced by an authority, or emerge in a

self-organized manner (e.g., by utilizing environmental signals such

as the time, date, season, etc.) in the form of a social convention.
Many real-world CPR problems are inherently large-scale and

partially observable, which further increases the challenge of sus-

tainability. In this work we deal with themost information-restrictive
setting: each participant is modeled as an individual agent with its

own policy conditioned only on local information, specifically his

own history of action/reward pairs (fully decentralized method).

Global observations, including the resource stock, the number of

participants, and the joint observations and actions, are hidden

– as is the case in many real-world applications, like commercial

fisheries. Under such a setting, it is impossible to avoid positive prob-
ability mass on undesirable actions (i.e., simultaneous appropriation),

since there is no correlation between the agents’ policies. This leads

to either low social welfare, because the agents are being conserva-

tive, or, evenworse, the depletion of the resource. Depletion becomes

more likely as the problem size grows due to the non-stationarity
of the environment and the global exploration problem.

We propose a simple technique: allow agents to observe an arbi-
trary, common signal from the environment. Observing a common



signal mitigates the aforementioned problems because it allows for

coupling between the learned policies, increasing the joint policy

space. Agents, for example, can now learn to harvest in turns, and

with varying efforts per signal value, or allow for fallow periods.

The benefit is twofold: the agents learn to not only avoid depletion,

but also to maintain a healthy stock which allows for large harvest

and, thus, higher social welfare. It is important to stress that we
do not assume any a priori relation between the signal space and
the problem at hand. Moreover, we require no communication, no

extrinsic incentive mechanism, and we do not change the underly-

ing architecture, or learning algorithm. We simply utilize a means

– common environmental signals that are amply available to the
agents [18] – to accommodate correlation between policies. This

in turn enables the emergence of ordering conventions of tempo-

ral nature (henceforth referred to as temporal conventions) and

sustainable harvesting strategies.

1.1 Our Contributions
(1) We are the first to introduce a realistic common-pool re-
source appropriation game formulti-agent coordination, based
on bio-economic models of commercial fisheries, and provide theo-

retical analysis on the dynamics of the environment.

(2) We propose a simple and novel technique: allow agents
to observe an arbitrary periodic environmental signal. Such
signals are amply available in the environment (e.g., time, date etc.)

and can foster cooperation among agents.

(3) We provide a thorough (quantitative & qualitative) anal-
ysis on the learned policies and demonstrate significant improve-

ments on sustainability, social welfare, and convergence speed.

1.2 Discussion & Related Work
As autonomous agents proliferate, they will be called upon to inter-

act in ever more complex environments. This will bring forth the

need for techniques that enable the emergence of sustainable coop-

eration. Despite the growing interest in and success of multi-agent

deep reinforcement learning (MADRL), scaling to environments

with a large number of learning agents continues to be a problem

[15]. A multi-agent setting is inherently susceptible to many pitfalls:

non-stationarity (moving-target problem), curse of dimensionality,

credit assignment, global exploration, relative overgeneralization

[20, 33, 48]
1
. Recent advances in the field of MADRL deal with only

a limited number of agents. It is shown that as the number of agents

increase, the probability of taking a correct gradient direction de-

creases exponentially [20], thus the proposed methods cannot be

easily generalized to complex scenarios with many agents.

Our approach aims to mitigate the aforementioned problems of

MADRL by introducing coupling between the learned policies. It is

important to note that the proposed approach does not change the

underlying architecture of the network (the capacity of the network

stays the same), nor the learning algorithm or the reward structure.

We simply augment the input space by allowing the observation of

1
Some of these adversities can be mitigated by the centralized training, decentralized

execution paradigm. Yet, centralized methods likewise suffer from a plethora of other

problems: they are computationally heavy, assume unlimited communication (which is

impractical in many real-world applications), the exact same team has to be deployed

(in the real-world we cooperate with strangers), and, most importantly, the size of the

joint action space grows exponentially with the number of agents.

an arbitrary common signal. The signal has no a priori relation to

the problem, i.e., we do not need to design an additional feature; in
fact we use a periodic sequence of arbitrary integers. It is still possible
for the original network (without the signal) to learn a sustainable

strategy. Nevertheless, we show that the simple act of augmenting

the input space drastically increases the social welfare, speed of

convergence, and the range of environmental parameters in which

sustainability can be achieved. Most importantly, the proposed ap-

proach requires no communication, creates no additional overhead,

it is simple to implement, and scalable.

The proposed technique was inspired by temporal conventions

in resource allocation games of non-cooperative game theory. The

closest analogue is the courtesy convention of [11], where rational

agents learn to coordinate their actions to access a set of indivisible

resources by observing a signal from the environment. Closely

related is the concept of the correlated equilibrium (CE) [1, 35],

which, from a practical perspective, constitutes perhaps the most

relevant non-cooperative solution concept [18]
2
. Most importantly,

it is possible to achieve a correlated equilibrium without a central

authority, simply by utilizing meaningless environmental signals

[2, 7, 11]. Such common environmental signals are amply available
to the agents [18]. The aforementioned line of research studies

pre-determined strategies of rational agents. Instead, we study the

emergent behaviors of a group of independent learning agents

aiming to maximize the long term discounted reward.

A second source of inspiration is behavioral conventions; one of

the key concepts that facilitates human coordination
3
. A convention

is defined as a customary, expected, and self-enforcing behavioral

pattern [28, 49]. It can be considered as a behavioral rule, designed

and agreed upon ahead of time [43, 46], or it may emerge from

within the system itself [34, 46]. The examined temporal convention

in this work falls on the latter category.

Moving on to the application domain, there has been great inter-

est recently in CPR problems (and more generally, social dilemmas

[24]) as an application domain for MADRL [21, 23, 25, 26, 32, 38–

40, 47]. CPR problems offer complex environment dynamics and

relate to real-world socio-ecological systems. There are a few dis-

tinct differences between the CPR models presented in the afore-

mentioned works and the model introduced in this paper: First and

foremost, we designed our model to resemble reality as closely as
possible using bio-economic models of commercial fisheries [8, 12],
resulting in complex environment dynamics. Second, we have a con-
tinuous action space which further complicates the learning process.

Finally, we opted not to learn from visual input (raw pixels). The

problem of direct policy approximation from visual input does not

add complexity to the social dilemma itself; it only adds complexity

in the feature extraction of the state. It requires large networks

because of the additional complexity of extracting features from

pixels, while only a small part of what is learned is the actual policy

[10]. Most importantly, it makes harder to study the policy in isola-

tion, as we do in this work. Moreover, from a practical perspective,

2
Correlated equilibria also relate to boundary rules and temporal conventions in

human societies; the most prominent example of a CE in real life is the traffic lights,

which can also be viewed as a temporal convention for the use of the road.

3
Humans are able to routinely and robustly cooperate in their every day lives in

large-scale and under dynamic and unpredictable demand. They also have access to

auxiliary information that help correlated their actions (e.g., time, date etc.).



learning from a visual input would be meaningless, given that we

are dealing with a low observability scenario where the resource

stock and the number and actions of the participants are hidden.

In terms of the methodology for dealing with the tragedy of

the commons, the majority of the aforementioned literature falls

broadly into two categories: Reward shaping [21, 23, 40], which

refers to adding a term to the extrinsic reward an agent receives

from the environment, and opponent shaping [25, 32, 38], which

refers to manipulating the opponent (by e.g., sharing rewards, pun-

ishments, or adapting your own actions). Contrary to that, we only

allow agents to observe an existing environmental signal. We do
not modify the intrinsic or extrinsic rewards, design new features, or
require a communication network. Finally, boundary rules emerged

in [38] as well in the form of spatial territories. Such territories can

increase inequality, while we maintain high levels of fairness.

2 AGENT & ENVIRONMENT MODELS
2.1 Multi-Agent Reinforcement Learning
We consider a decentralized multi-agent reinforcement learning

scenario in a partially observable general-sum Markov game [42].

At each time-step, agents take actions based on a partial observa-

tion of the state space, and receive an individual reward. Each agent

learns a policy independently. More formally, let N = {1, . . . , 𝑁 }
denote the set of agents, andM be an𝑁 -player, partially observable

Markov game defined on a set of states S. An observation func-

tion O𝑛
: S → R𝑑

specifies agent 𝑛’s 𝑑-dimensional view of the

state space. Let A𝑛
denote the set of actions for agent 𝑛 ∈ N , and

𝒂 = ×∀𝑛∈N𝑎𝑛 , where 𝑎𝑛 ∈ A𝑛
, the joint action. The states change

according to a transition function T : S×A1 × · · · ×A𝑁 → Δ(S),
where Δ(S) denotes the set of discrete probability distributions

over S. Every agent 𝑛 receives an individual reward based on the

current state 𝜎𝑡 ∈ S and joint action 𝒂𝑡 . The latter is given by

the reward function 𝑟𝑛 : S × A1 × · · · × A𝑁 → R. Finally, each

agent learns a policy 𝜋𝑛 : O𝑛 → Δ(A𝑛) independently through

their own experience of the environment (observations and re-

wards). Let 𝝅 = ×∀𝑛∈N𝜋𝑛 denote the joint policy. The goal for each

agent is to maximize the long term discounted payoff, as given by

𝑉𝑛
𝝅 (𝜎0) = E

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑛 (𝜎𝑡 , 𝒂𝑡 ) |𝒂𝑡 ∼ 𝝅𝑡 , 𝜎𝑡+1 ∼ T (𝜎𝑡 , 𝒂𝑡 )
]
, where

𝛾 is the discount factor and 𝜎0 is the initial state.

2.2 The Common Fishery Model
In order to better understand the impact of self-interested appropri-

ation, it would be beneficial to examine the dynamics of real-world
common-pool renewable resources. To that end, we present an

abstracted bio-economic model for commercial fisheries [8, 12].

The model describes the dynamics of the stock of a common-pool

renewable resource, as a group of appropriators harvest over time.

The harvest depends on (i) the effort exerted by the agents and

(ii) the ease of harvesting a resource at that point of time, which

depends on the stock level. The stock replenishes over time with a

rate dependent on the current stock level.

More formally, let N denote the set of appropriators, 𝜖𝑛,𝑡 ∈
[0, E𝑚𝑎𝑥 ] the effort exerted by agent 𝑛 at time-step 𝑡 , and 𝐸𝑡 =∑
𝑛∈N 𝜖𝑛,𝑡 the total effort at time-step 𝑡 . The total harvest is given

by Eq. 1, where 𝑠𝑡 ∈ [0,∞) denotes the stock level (i.e., amount of

resources) at time-step 𝑡 , 𝑞(·) denotes the catchability coefficient

(Eq. 2), and 𝑆𝑒𝑞 is the equilibrium stock of the resource.

𝐻 (𝐸𝑡 , 𝑠𝑡 ) =
{
𝑞(𝑠𝑡 )𝐸𝑡 , if 𝑞(𝑠𝑡 )𝐸𝑡 ≤ 𝑠𝑡
𝑠𝑡 , otherwise

(1)

𝑞(𝑥) =
{

𝑥
2𝑆𝑒𝑞

, if 𝑥 ≤ 2𝑆𝑒𝑞

1 , otherwise
(2)

Each environment can only sustain a finite amount of stock. If

left unharvested, the stock will stabilize at 𝑆𝑒𝑞 . Note also that 𝑞(·),
and therefore 𝐻 (·), are proportional to the current stock, i.e., the
higher the stock, the larger the harvest for the same total effort. The

stock dynamics are governed by Eq. 3, where 𝐹 (·) is the spawner-
recruit function (Eq. 4) which governs the natural growth of the

resource, and 𝑟 is the growth rate. To avoid highly skewed growth

models and unstable environments (‘behavioral sink’ [4, 5]), 𝑟 ∈
[−𝑊 (−1/(2𝑒)),−𝑊−1 (−1/(2𝑒))] ≈ [0.232, 2.678], where𝑊𝑘 (·) is
the Lambert𝑊 function (see Section C for details).

𝑠𝑡+1 = 𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 )) (3)

𝐹 (𝑥) = 𝑥𝑒𝑟 (1−
𝑥

𝑆𝑒𝑞
)

(4)

We assume that the individual harvest is proportional to the

exerted effort (Eq. 5), and the revenue of each appropriator is given

by Eq. 6, where 𝑝𝑡 is the price ($ per unit of resource), and 𝑐𝑡 is the

cost ($) of harvesting (e.g., operational cost, taxes, etc.). Here lies the

‘tragedy’: the benefits from harvesting are private (𝑝𝑡ℎ𝑛,𝑡 (𝜖𝑛,𝑡 , 𝑠𝑡 )),
but the loss is borne by all (in terms of a reduced stock, see Eq. 3).

ℎ𝑛,𝑡 (𝜖𝑛,𝑡 , 𝑠𝑡 ) =
𝜖𝑛,𝑡

𝐸𝑡
𝐻 (𝐸𝑡 , 𝑠𝑡 ) (5)

𝑢𝑛,𝑡 (𝜖𝑛,𝑡 , 𝑠𝑡 ) = 𝑝𝑡ℎ𝑛,𝑡 (𝜖𝑛,𝑡 , 𝑠𝑡 ) − 𝑐𝑡 (6)

2.2.1 Optimal Harvesting. The question that naturally arises is:

what is the ‘optimal’ effort in order to harvest a yield that maximizes

the revenue (Eq. 6). We make two assumptions: First, we assume

that the entire resource is owned by a single entity (e.g., a firm

or the government), which possesses complete knowledge of and

control over the resource. Thus, we only have a single control

variable, 𝐸𝑡 . This does not change the underlying problem since

the total harvested resources are linear in the proportion of efforts

put by individual agents (Eq. 5). Second, we consider the case of

zero discounting, i.e., future revenues are weighted equally with

current ones. Of course firms (and individuals) do discount the

future and bio-economic models should take that into account, but

this complicates the analysis and it is out of the scope of this work.

We argue we can still draw useful insight into the problem.

Our control problem consists of of finding a piecewise continuous

control𝐸𝑡 , so as tomaximize the total revenue (max𝐸𝑡

∑𝑇
𝑡=0𝑈𝑡 (𝐸𝑡 , 𝑠𝑡 )).

The maximization problem can be solved using Optimal Control

Theory [13, 27]. We have proven the following theorem:

Theorem 2.1. The optimal control variable 𝐸∗𝑡 that solves the max-
imization problem max𝐸𝑡

∑𝑇
𝑡=0𝑈𝑡 (𝐸𝑡 , 𝑠𝑡 ) given the model dynamics

described in Section 2.2 is given by Eq. 7, where 𝜆𝑡 are the adjoint
variables of the Hamiltonians:

𝐸∗𝑡+1 =

{
𝐸𝑚𝑎𝑥 , if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))) ≥ 0

0, if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))) < 0

(7)



Proof. (sketch) We formulate the Hamiltonians [13, 27], which

turn out to be linear in the control variables 𝐸𝑡+1 with coefficients

(𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))). Thus, the optimal sequence of

𝐸𝑡+1 that maximizes the Hamiltonians is given according to the

sign of those coefficients. See Section B for the complete proof. □

The optimal strategy is a bang–bang controller, which switches

based on the adjoint variable values, stock level, and price. The

values for 𝜆𝑡 do not have a closed form expression (because of the

discontinuity of the control), but can be found iteratively for a given

set of environment parameters (𝑟 , 𝑆𝑒𝑞) and the adjoint equations

[13, 27]. However, the discontinuity in the control input makes

solving the adjoint equations quite cumbersome. We can utilize

iterative forward/backward methods as in [13], but this is out of

the scope of this paper.

There are a few interesting key points. First, to compute the

optimal level of effort we require observability of the resource stock,

which is not always a realistic assumption (in fact in this workwe do

not make this assumption). Second, we require complete knowledge

of the strategies of the other appropriators. Third, even if both the

aforementioned conditions are met, the bang-bang controller of

Eq. 7 does not have a constant transition limit; the limit changes at

each time time-step, determined by the adjoint variable 𝜆𝑡+1, thus
finding the switch times remains quite challenging.

2.2.2 Harvesting at Maximum Effort. To gain a deeper under-

standing of the dynamics of the environment, we will now consider

a baseline strategy where every agent harvests with the maximum

effort at every time-step, i.e., 𝜖𝑛,𝑡 = E𝑚𝑎𝑥 ,∀𝑛 ∈ N ,∀𝑡 . This corre-
sponds to the Nash Equilibrium of a stage game (myopic agents). For

a constant growth rate 𝑟 and a given number of agents 𝑁 , we can

identify two interesting stock equilibrium points (𝑆𝑒𝑞 ): the ‘limit of

sustainable harvesting’, and the ‘limit of immediate depletion’.

The limit of sustainable harvesting (𝑆𝑁,𝑟

𝐿𝑆𝐻
) is the stock equilibrium

point where the goal of sustainable harvesting becomes trivial: for

any 𝑆𝑒𝑞 > 𝑆𝑁,𝑟

𝐿𝑆𝐻
, the resource will not get depleted, even if all agents

harvest at maximum effort. Note that the coordination problem re-
mains far from trivial even for 𝑆𝑒𝑞 > 𝑆𝑁,𝑟

𝐿𝑆𝐻
, especially for increasing

population sizes. Exerting maximum effort in environments with

𝑆𝑒𝑞 close to 𝑆𝑁,𝑟

𝐿𝑆𝐻
will yield low returns because the stock remains

low, resulting in a small catchability coefficient. In fact, this can

be seen in Fig. 1 which depicts the social welfare (SW), i.e., sum

of utilities, against increasing 𝑆𝑒𝑞 values (𝑁 ∈ [2, 64], E𝑚𝑎𝑥 = 1,

𝑟 = 1). Red dots
4
denote the 𝑆𝑁,𝑟

𝐿𝑆𝐻
. Thus, the challenge is not only to

keep the strategy sustainable, but to keep the resource stock high, so
that the returns can be high as well.

On the other end of the spectrum, the limit of immediate de-

pletion (𝑆𝑁,𝑟

𝐿𝐼𝐷
) is the stock equilibrium point where the resource is

depleted in one time-step (under maximum harvest effort by all the

agents). The problem does not become impossible for 𝑆𝑒𝑞 ≤ 𝑆𝑁,𝑟

𝐿𝐼𝐷
,

yet, exploration can have catastrophic effects (amplifying the prob-

lem of global exploration in MARL). The following two theorems

prove the formulas for 𝑆𝑁,𝑟

𝐿𝑆𝐻
and 𝑆𝑁,𝑟

𝐿𝐼𝐷
.

Theorem 2.2. The limit of sustainable harvesting 𝑆𝑁,𝑟

𝐿𝑆𝐻
for a con-

tinuous resource governed by the dynamics of Section 2.2, assuming

4
Slight deviations from the predicted theoretical values of Eq. 8 due to the finite episode

length and non-zero threshold.

Figure 1: Social welfare (SW) – normalized by the maximum
SW obtained in each setting – against increasing 𝑆𝑒𝑞 values.
𝑁 ∈ [2, 64], E𝑚𝑎𝑥 = 1, and 𝑟 = 1. 𝑥-axis is in logarithmic scale.

that all appropriators harvest with the maximum effort E𝑚𝑎𝑥 , is:

𝑆𝑁,𝑟

𝐿𝑆𝐻
=
𝑒𝑟𝑁E𝑚𝑎𝑥

2(𝑒𝑟 − 1) (8)

Proof. Note that for 𝑆𝑒𝑞 > 𝑆𝑁,𝑟

𝐿𝑆𝐻
, 𝑞(𝑠𝑡 )𝐸𝑡 < 𝑠𝑡 ,∀𝑡 , otherwise

the resource would be depleted. Moreover, if 𝑠0 = 𝑆𝑒𝑞 – which is a

natural assumption, since prior to any intervention the stock will

have stabilized on the fixed point – then
5 𝑠𝑡 < 2𝑆𝑒𝑞,∀𝑡 . Thus, we

can re-write Eq. 1 and 2 as:

𝐻 (𝐸𝑡 , 𝑠𝑡 ) =
𝑠𝑡

2𝑆𝑒𝑞
𝐸𝑡 =

𝑠𝑡𝑁E𝑚𝑎𝑥

2𝑆𝑒𝑞

Let 𝛼 ≜ 𝑁 E𝑚𝑎𝑥

2𝑆𝑒𝑞
, and 𝛽 = 1 − 𝛼 . The state transition becomes:

𝑠𝑡+1 = 𝐹 (𝑠𝑡 − 𝛼𝑠𝑡 ) = 𝛽𝑠𝑡𝑒
𝑟 (1− 𝛽

𝑆𝑒𝑞
𝑠𝑡 )

We write it as a difference equation:

Δ𝑡 (𝑠𝑡 ) ≜ 𝑠𝑡+1 − 𝑠𝑡 = (𝛽𝑒𝑟 (1−
𝛽

𝑆𝑒𝑞
𝑠𝑡 ) − 1)𝑠𝑡

At the limit of sustainable harvesting, as the stock diminishes

to
6 𝑠𝑡 = 𝛿 → 0, to remain sustainable it must be that Δ𝑡 (𝑠𝑡 ) > 0.

Thus, it must be that:

lim

𝑠𝑡→0
+
𝑠𝑔𝑛(Δ𝑡 (𝑠𝑡 )) > 0

𝑠𝑡→0
+>0

⇒ 𝛽𝑒𝑟 − 1 > 0 ⇒ 𝑆𝑒𝑞 >
𝑒𝑟𝑁E𝑚𝑎𝑥

2(𝑒𝑟 − 1)
□

Theorem 2.3. The limit of immediate depletion 𝑆𝑁,𝑟

𝐿𝐼𝐷
for a contin-

uous resource governed by the dynamics of Section 2.2, assuming that
all appropriators harvest with the maximum effort E𝑚𝑎𝑥 , is given by:

𝑆𝑁,𝑟

𝐿𝐼𝐷
=
𝑁E𝑚𝑎𝑥

2

(9)

Proof. The resource is depleted if:

𝐻 (𝐸𝑡 , 𝑠𝑡 ) = 𝑠𝑡 ⇒ 𝑞(𝑠𝑡 )𝐸𝑡 ≥ 𝑠𝑡 ⇒
𝑠𝑡

2𝑆𝑒𝑞
𝐸𝑡 ≥ 𝑠𝑡 ⇒ 𝑆𝑒𝑞 ≤ 𝑁E𝑚𝑎𝑥

2

□

5
Given that 𝑟 ∈ [−𝑊 (−1/(2𝑒)),−𝑊−1 (−1/(2𝑒)) ].

6
In practice, 𝛿 is enforced by the granularity of the resource.



2.3 Environmental Signal
We introduce an auxiliary signal; side information from the environ-

ment (e.g., time, date etc.) that agents can potentially use in order

to facilitate coordination and reach more sustainable strategies.

Real-world examples include shepherds that graze on particular

days of the week or fishermen that fish on particular months. In

our case, the signal can be thought as a mechanism to increase

the set of possible (individual and joint) policies. Such signals are

amply available to the agents [11, 18].We do not assume any a priori
relation between the signal and the problem at hand. In fact, in this

paper we use a set of arbitrary integers, that repeat periodically.

We use G = {1, . . . ,𝐺} to denote the set of signal values.

3 SIMULATION RESULTS
3.1 Setup
3.1.1 Environment Settings. Let 𝑝𝑡 = 1, and 𝑐𝑡 = 0, ∀𝑡 . We

set the growth rate at 𝑟 = 1, the initial population at 𝑠0 = 𝑆𝑒𝑞 ,

and the maximum effort at E𝑚𝑎𝑥 = 1. The findings of Section

2.2.2 provide a guide on the selection of the 𝑆𝑒𝑞 values. Specifically

we simulated environments with 𝑆𝑒𝑞 given by Eq. 10, where 𝐾 =

𝑆
𝑁,𝑟

𝐿𝑆𝐻

𝑁
=

𝑒𝑟 E𝑚𝑎𝑥

2(𝑒𝑟−1) ≈ 0.79 is a constant and𝑀𝑠 ∈ R+ is amultiplier that

adjusts the scarcity (difficulty).𝑀𝑠 = 1 corresponds to 𝑆𝑒𝑞 = 𝑆𝑁,𝑟

𝐿𝑆𝐻
.

𝑆𝑒𝑞 = 𝑀𝑠𝐾𝑁 (10)

3.1.2 Agent Architecture. Each agent uses a two-layer (64 neu-

rons each) neural network for the policy approximation. The input

(observation 𝑜𝑛 = O𝑛 (𝑆)) is a tuple ⟨𝜖𝑛,𝑡−1, 𝑢𝑛,𝑡−1 (𝜖𝑛,𝑡−1, 𝑠𝑡−1), 𝑔𝑡 ⟩
consisting of the individual effort exerted and reward obtained in

the previous time-step and the current signal value. The output

is a continuous action value 𝑎𝑡 = 𝜖𝑛,𝑡 ∈ [0, E𝑚𝑎𝑥 ] specifying the

current effort level. The policies are trained using the Proximal

Policy Optimization (PPO) algorithm [41]. PPO was chosen because

it avoids large policy updates, ensuring a smoother training, and

avoiding catastrophic failures. The reward received from the envi-

ronment corresponds to the revenue, i.e., 𝑟𝑛 (𝜎𝑡 , 𝒂𝑡 ) = 𝑢𝑛,𝑡 (𝜖𝑛,𝑡 , 𝑠𝑡 ),
and the discount factor was set to 𝛾 = 0.99.

3.1.3 Signal Implementation. The signal is represented as a 𝐺-

dimensional one-hot encoded vector, where the high bit is shifted

periodically. The initial value was chosen at random at the be-

ginning of each episode to avoid bias towards particular values.

Throughout this paper, the term no signal will be used interchange-

ably to a unit signal size 𝐺 = 1, since a signal of size 1 in one-hot

encoding is just a constant input that yields no information. We

evaluated signals of varying cardinality (see Section 3.6).

3.1.4 Termination Condition. An episode terminates when ei-

ther (a) the resource stock falls below a threshold 𝛿 = 10
−4
, or (b)

a fixed number of time-steps 𝑇𝑚𝑎𝑥 = 500 is reached. We trained

our agents for a maximum of 5000 episodes, with the possibility

of early stopping if both of the following conditions are satisfied:

(i) a minimum of 95% of the maximum episode duration (i.e., 475

time-steps) is reached for 200 episodes in a row, and, (ii) the average

total reward obtained by agents in each episode of the aforemen-

tioned 200 episodes does not change by more than 5%. In case of

early stopping, the metric values for the remainder of the episodes

are extrapolated as the average of the last 200 episodes, in order to

properly average across trials.

3.1.5 Measuring The Influence of the Signal. It is important

to have a quantitative measure of the influence of the introduced

signal. As such, we adapted the Causal Influence of Communication

(CIC) [31] metric, initially designed to measure positive listening in

emergent inter-agent communication. The CIC is calculated using

the mutual information between the signal and the agent’s action.

Please see Section D.3 for a complete description.

3.1.6 Reproducibility, Reporting ofResults, Limitations. Re-
producibility is a major challenge in (MA)DRL due to different

sources of stochasticity, e.g., hyper-parameters, model architecture,

implementation details, etc. [14, 19, 20]. To minimize those sources,

the implementation was done using RLlib
7
, an open-source library

for MADRL [29]. We refer the reader to Section D for a description

of the architecture and hyper-parameters.

All simulations were repeated 8 times and the reported results

are the average values of the last 10 episodes over those trials

(excluding Fig. 7 which depicts a representative trial). (MA)DRL

also lacks common practices for statistical testing [19, 20]. In this

work, we opted to use the Student’s T-test [45] due to it’s robustness

[9]. Nearly all of the reported results have p-values < 0.05.

Finally, we strongly believe that the community would benefit

from reporting negative results. As such, we want to make clear

that the proposed solution is not a panacea for all multi-agent

coordination problems, not even for the proposed domain. For

example, we failed to find sustainable policies using DDPG [30] –

with or without the signal – for any set of environment parameters.

This also comes to show the difficulty of the problem at hand. We

suspect that the clipping in PPO’s policy changes plays an important

role in averting catastrophic failures in high-stakes environments.

3.2 Results
We present the result from a systematic evaluation of the pro-

posed approach on a wide variety of environmental settings (𝑀𝑠 ∈
[0.2, 1.2], i.e., ranging from way below the limit of immediate de-

pletion,𝑀𝐿𝐼𝐷
𝑠 ≈ 0.63, to above the limit of sustainable harvesting,

𝑀𝐿𝑆𝐻
𝑠 = 1) and population size (𝑁 ∈ [2, 64]). Due to lack of space

we only present the most relevant results; see Section E for a com-

plete report (e.g., results tables, fairness, small population sizes,

etc.).

In the majority of the results, we study the influence of a signal

of cardinality 𝐺 = 𝑁 compared to no signal (𝐺 = 1). Thus, unless

stated otherwise, the term ‘with signal’ will refer to 𝐺 = 𝑁 .

3.3 Sustainability & Social Welfare
3.3.1 Sustainability. We declare a strategy ‘sustainable’, iff the

agents reach the maximum episode duration (500 steps), i.e., they

do not deplete the resource. Fig. 2 depicts the achieved episode

length – with and without the presence of a signal (𝐺 = 𝑁 ) –

for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

The introduction of the signal significantly increases the range of

environments (𝑀𝑠 ) where sustainability can be achieved. Assuming

that𝑀𝑠 ∈ [0, 1] – since for𝑀𝑠 ≥ 1 sustainability is guaranteed by

7
https://docs.ray.io/en/latest/rllib.html

https://docs.ray.io/en/latest/rllib.html


(a) 𝑁 = 8

(b) 𝑁 = 16

(c) 𝑁 = 32

(d) 𝑁 = 64

Figure 2: Episode length, with and without the signal (𝐺 =

𝑁 ), for environments of decreasing difficulty (increasing
equilibrium stock multiplier𝑀𝑠 ).

definition – we have an increase of 17% − 300% (46% on average)

in the range of sustainable𝑀𝑠 values. Moreover, as the number of

agents increases (𝑁 = 32 & 64), depletion is avoided in non-trivial

𝑀𝑠 values only with the introduction of the signal. Finally, note that
the𝑀𝑠 value where a sustainable strategy is found increases with

𝑁 , which demonstrates that the difficulty of the problem increases

superlinearly to 𝑁 (given that 𝑆𝑒𝑞 ∝ 𝑀𝑠𝑁 ).

3.3.2 Socialwelfare. Reaching a sustainable strategy – i.e., avoid-
ing resource depletion – is only one piece of the puzzle; an agent’s

revenue depends on the harvest (Eq. 1), which in turns depends on

the catchability coefficient (Eq. 2). Thus, in order to achieve a high

social welfare (sum of utilities, i.e.,

∑
𝑛∈N 𝑟

𝑛 (·)), the agents need to
learn policies that balance the trade-off between maintaining a high

stock (which ensues a high catchability coefficient), and yielding

a large harvest (which results to a higher reward). This problem

becomes even more apparent as resources become more abundant

(i.e., for𝑀𝑠 = 1 ± 𝑥 , i.e., close to the limit of sustainable harvesting

(below or, especially, above), see Section 2.2.2). In these settings, it is

easy to find a sustainable strategy; a myopic best-response strategy

(harvesting at maximum effort) by all agents will not deplete the

resource. Yet, it will result in low social welfare (SW).

Fig. 3 depicts the relative difference in SW, in a setting with

and without the signal ((𝑆𝑊𝐺=𝑁 − 𝑆𝑊𝐺=1)/𝑆𝑊𝐺=1, where 𝑆𝑊𝐺=𝑋

denotes the SW achieved using a signal of cardinality 𝑋 ), for envi-

ronments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ) and vary-

ing population size (𝑁 ∈ [8, 64]). To improve readability, changes

greater than 100% are shown with numbers on the top of the bars.

Given the various sources of stochasticity, we opted to omit settings

in which agents were not able to reach an episode duration of more

than 10 time-steps (either with or without the signal).

The presence of the signal results in a significant improvement

in SW. Specifically, we have an average of 258% improvement across

Figure 3: Relative difference in social welfare (SW) when
signal of cardinality 𝐺 = 𝑁 is introduced ((𝑆𝑊𝐺=𝑁 −
𝑆𝑊𝐺=1)/𝑆𝑊𝐺=1, where 𝑆𝑊𝐺=𝑋 denotes the SW achieved using
a signal of cardinality 𝑋 ), for environments of decreasing
difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ) and varying population size
(𝑁 ∈ [4, 64]). To improve readability, changes greater than
100% are shown with numbers on the top of the bars.

Figure 4: Relative difference in convergence timewith the in-
troduction of a signal ((𝐶𝑇𝐺=𝑁 −𝐶𝑇𝐺=1)/𝐶𝑇𝐺=1, where𝐶𝑇𝐺=𝑋

denotes the time until convergence when using a signal of
cardinality 𝑋 ), for environments of decreasing difficulty (in-
creasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ) and varying population size (𝑁 ∈ [8, 64])

all the depicted settings8 in Fig. 3, while the maximum improve-

ment is 3306%. These improvements stem from (i) achieving more

sustainable strategies, and (ii) improved cooperation. The former

results in higher rewards due to longer episodes in settings where

the strategies without the signal deplete the resource. The latter

allows to avoid over-harvesting, which results in higher catchability

coefficient, in settings where both strategies (with, or without the

signal) are sustainable. The contribution of the signal is much more

pronounced under scarcity: the difference in achieved SW decreases

as 𝑀𝑠 increases, eventually becoming less than 10% (𝑀𝑠 > 1 for

𝑁 = 8 & 16, and 𝑀𝑠 > 1.2 for 𝑁 = 32 & 64). This suggests that

the proposed approach is of high practical value in environments

where resources are scarce (like most real-world applications), a

claim that we further corroborate in Sections 3.5 and 3.7.

3.4 Convergence Speed
The second major influence of the introduction of the proposed

signal – besides the sustainability and efficiency of the learned

strategies – is on the convergence time. Let the system be considered

converged when the global state does not change significantly. As

a practical way to pinpoint the time of convergence, we used the

‘Termination Criterion’ of Section 3.1.4. Fig. 4 depicts the relative

difference in convergence time with the introduction of a signal

8
The averaging is performed across the entire range of the depicted𝑀𝑠 ∈ [0.2, 1.2],
including the really scarce environments of 𝑀𝑠 = 0.2 and 0.3 where there is no

sustainable strategy with or without the signal and, thus, the change is zero.



Figure 5: Average (over agents and trials) CIC values (nor-
malized) vs. the equilibrium stock multiplier 𝑀𝑠 , for popu-
lation/signal size 𝑁 = 𝐺 ∈ {8, 16, 32, 64}.

((𝐶𝑇𝐺=𝑁 − 𝐶𝑇𝐺=1)/𝐶𝑇𝐺=1, where 𝐶𝑇𝐺=𝑋 denotes the time until

convergence, in #episodes, when using a signal of cardinality 𝑋 ),

for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ) and

varying population size (𝑁 ∈ [8, 64]). We have omitted the settings

in which agents were not able to reach an episode duration of more

than 10 time-steps (either with or without the signal).

There is a disjoint effect of the signal on the convergence speed.

Up to the limit of sustainable harvesting (𝑀𝑠 ≤ 1), the signal sig-

nificantly improves the convergence speed (13% improvement on

average, across all the depicted settings including the ones with

no improvement, and up to 53%). This is vital, as the majority of

real-world problems involve managing scarce resources. On the other

hand, for𝑀𝑠 > 1, i.e., settings with abundant resources, the system

converges faster without the signal (14% slower with the signal on

average, across all the depicted settings). One possible explanation

is that as resources become more abundant, it is harder (impossible

for 𝑀𝑠 > 1) for agents to deplete them. Therefore the learning is

more efficient – and the convergence is faster – since the episodes

tend to last longer (without needing the signal). Moreover, having

an abundance of resources decouples the effects of the agents’ ac-

tions to each other, reducing the variance, and again making easing

the learning process without the signal.

3.5 Influence of Signal on Agent Strategies
The results presented so far provide a qualitative measure of the

influence of the introduced signal through the improvement on

sustainability, social welfare, and convergence speed. They also in-

dicate a decrease on the influence of the signal as resources become

abundant. The question that naturally arises is: howmuch do agents

actually take the signal into account in their policies? To answer

this question, Fig. 5 depicts the CIC values – a quantitative measure

of the influence of the introduced signal (see Section 3.1.5) – versus

increasing values of𝑀𝑠 (i.e, increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 , or more abundant

resources), for population/signal size 𝑁 = 𝐺 ∈ {8, 16, 32, 64}. The
values are averaged across the 8 trials and the agents, and are nor-

malized with respect to the maximum value for each population
9
.

Higher CIC values indicate a higher causal influence of the signal.

CIC is low for the trials in which a sustainable strategy could not

be found (𝑀𝑠 = 0.2−0.3 for𝑁 = 8, 16,𝑀𝑠 = 0.2−0.5 for𝑁 = 32, and

𝑀𝑠 = 0.2 − 0.8 for 𝑁 = 64, see Fig. 2). In cases where a sustainable

strategy was reached (e.g.,𝑀𝑠 ≥ 0.4 for 𝑁 = 8), we see significantly

higher CIC values on scarce resource environments, and then the

9
For the absolute values please refer to Table 12. Fig. 5 shows trends across𝑀𝑠 values

– not between populations sizes (due to the normalization).

(a)

(b)

Figure 6: Achieved social welfare (Fig. 6a) and convergence
time (Fig. 6b) for different signals of cardinality (𝐺) 1, 𝑁

2
= 16,

23, 𝑁 = 32, 41, and 3𝑁
2

= 48 (for varying resource levels𝑀𝑠 ).

CIC decreases as𝑀𝑠 increases. The harder the coordination problem,
the more the agents rely on the environmental signal.

3.6 Robustness to Signal Size
Up until now we have evaluated the presence (or lack thereof) of

an environmental signal of cardinality equal to the population size

(𝐺 = 𝑁 ). This requires exact knowledge of 𝑁 , thus it is interesting

to test the robustness of the proposed approach under varying

signal sizes. As a representative test-case, we evaluated different

signals of cardinality 𝐺 = 1,
𝑁
2
, 23, 𝑁 , 41, and

3𝑁
2

for 𝑁 = 32 and

moderate scarcity for the resource (𝑀𝑠 values of 0.7, 0.8 and 0.9).

The values 23 and 41 were chosen as they are prime numbers (i.e.,

not multiples of 𝑁 ). Fig. 6 depicts the achieved social welfare and

convergence time under the aforementioned settings.

Starting with Fig. 6a we can see that the SW increases with the

signal cardinality. Specifically, we have 263%, 255%, 341%, 416%,

and 474% improvement on average across the three𝑀𝑠 values for

𝐺 = 𝑁
2
, 23, 𝑁 , 41, and

3𝑁
2
, respectively. We hypothesize that the

improvement stems from an increased joint strategy space that the

larger signal size allows. A signal size larger than 𝑁 can also allow

the emergence of ‘rest’ (fallow) periods – signal values where the

majority of agents harvests at really low efforts. This would allow

the resource to recuperate, and increase the SW through a higher

catchability coefficient. See Section 3.7 / Fig. 7b for an example.

Regarding the convergence speed (Fig. 6b), we have 22%, 38%,

36%, 41%, and 36% improvement on average (across𝑀𝑠 values).

These results showcase that the introduction of the signal itself

– regardless of its cardinality or, more generally, its temporal repre-

sentative power – provides a clear benefit to the agents in terms of

SW and convergence speed. This greatly improves the real-world

applicability of the proposed technique, as the the knowledge of
the exact population size is not required; instead the agents can opt

to select any signal available in their environment
10
. Moreover,

the signal cardinality can also be considered as a design choice,

depending on the requirements and limitations of the system.

10
The signal is represented as a one-hot vector, i.e., Fig. 6 shows that a network with

32 inputs can work for population sizes 𝑁 ∈ [16, 48], or equivalently, that agents in a

population of size 𝑁 = 32 can use networks with 16 − 48 inputs for the signal.



3.7 Emergence of Temporal Conventions
3.7.1 Qualitative Analysis. We have seen that the introduction

of an arbitrary signal facilitates cooperation and the sustainable

harvesting. But do temporal conventions actually emerge?

Fig. 7a presents an example of the evolution of the agents’ strate-

gies for each signal value for a population of 𝑁 = 4, signal size

𝐺 = 𝑁 = 4, and equilibrium stock multiplier 𝑀𝑠 = 0.5 (smoothed

over 50 episodes). Each row represents an agent (agent 𝑛𝑖 ), while

each column represents a signal value (value 𝑔 𝑗 ). Each line rep-

resents the average effort the agent exerts on that specific signal

value – calculated by averaging the actions of the agent in each

corresponding signal value across the episode.

We can see a clear temporal convention emerging: at signal value

𝑔1 (first column), only agents 𝑛1 and 𝑛3 harvest (first and third row),

at 𝑔2, 𝑛2 and 𝑛4 harvest, at 𝑔3, 𝑛1 and 𝑛3 harvest, and, finally, at 𝑔4,

𝑛2 and 𝑛4. Contrary to that, in a sustainable joint strategy without

the use of the signal, every agent harvests at every time-step with

an average (across all agents) effort of ≈ 40% (for the same setting of

𝑁 = 4 and𝑀𝑠 = 0.5). Having all agents harvesting at every time-step
makes coordination increasingly harder as we increase the population
size, mainly due to the non-stationarity of the environment (high

variance) and the global exploration problem.

3.7.2 Access Rate. In order to facilitate a systematic analysis of

the accessing patterns, we discretized the agents into three bins:

agents harvesting with effort 𝜖 ∈ [0 − 0.33) (‘idle’), [0.33 − 0.66)
(‘moderate’), and [0.66− 1] (‘active’). Then we counted the average

number of agents in each bin at the first equilibrium stockmultiplier

(𝑀𝑠 ) where a non-depleting strategy was achieved in each setting.

Without a signal, either the majority of the agents are ‘moderate’

harvesters (specifically 84% for 𝑁 = 8 and 16), or all of them are

‘active’ harvesters (100% for 𝑁 = 32 and 64). With the signal, we

have a clear separation into ‘idle’ and ‘active’: (‘idle’, ‘active’) =

(61%, 30%), (59%, 28%), (38%, 44%), (50%, 40%), for 𝑁 = 8, 16, 32,

and 64, respectively
11
. It is apparent that with the signal the agents

learn a temporal convention; only a minority is ‘active’ per time-
step, allowing to maintaining a healthy stock and reach sustainable
strategies of high social welfare.

3.7.3 Fallowing. A more interesting joint strategy can be seen

in Fig. 7b (𝑁 = 2, 𝑀𝑠 = 0.5). In this setting, we have an increased

number of available signals, specifically 𝐺 = 3𝑁
2

= 3. We can see

that agents harvest alternatingly in the first two signal values, and

rest on the third (fallow period), potentially to allow resources to

replenish and consequently obtain higher rewards in the future due

to a higher catchability coefficient. This also resembles the optimal

(bang-bang) harvesting strategy of Theorem 2.1.

4 CONCLUSION
The challenge to cooperatively solve ‘the tragedy of the commons’

remains as relevant now as when it was first introduced by Hardin

in 1968. Sustainable development and avoidance of catastrophic sce-

narios in socio-ecological systems – like the permanent depletion

of resources, or the extinction of endangered species – constitute

11
The setting with 𝑁 = 64 was run with 𝑟 = 2 in both cases (with and without the

signal). See Section E for more information.

(a)

(b)

Figure 7: Evolution of the agents’ strategies for each signal
value, smoothed over 50 episodes. Fig. 7a pertains to a pop-
ulation of 𝑁 = 4 and signal size 𝐺 = 𝑁 = 4, while Fig. 7b to
a population of 𝑁 = 2 and signal size 𝐺 = 3𝑁

2
= 3. In both

cases the equilibrium stock multiplier is 𝑀𝑠 = 0.5. Each row
represents an agent (𝑛𝑖 ), while each column a signal value
(𝑔 𝑗 ). Each line depicts the average effort the agent exerts on
that specific signal value – calculated by averaging the ac-
tions of the agent in each corresponding signal value across
the episode. Shaded areas represent one standard deviation.

critical open problems. To add to the challenge, real-world prob-

lems are inherently large in scale and of low observability. This

amplifies traditional problems in multi-agent learning, such as the

global exploration and the moving-target problem. Earlier work in

common-pool resource appropriation utilized intrinsic or extrinsic

incentives (e.g., reward or opponent shaping). Yet, such techniques

need to be designed for the problem at hand and/or require com-

munication or observability of states/actions, which is not always

feasible (e.g., in commercial fisheries, the stock or harvesting efforts

can not be directly observed). Humans on the other hand show a

remarkable ability to self-organize and resolve common-pool re-

source dilemmas, oftenwithout any extrinsic incentive mechanism or
communication. Social conventions and the use of auxiliary environ-
mental information constitute key mechanisms for the emergence

of cooperation under low observability. In this paper, we demon-

strate that utilizing such environmental signals – which are amply

available – is a simple, yet powerful and robust technique, to foster

cooperation in large-scale, low observability, and high-stakes envi-

ronments. We are the first to tackle a realistic CPR appropriation

scenario modeled on real-world commercial fisheries and under

low observability. Our approach avoids permanent depletion in a

wider (up to 300%) range of settings, while achieving higher social

welfare (up to 3306%) and convergence speed (up to 53%).
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A APPENDIX
A.1 Contents
In this appendix we include several details that have been omitted

from the main text. In particular:

- In Section B, we prove Theorem 2.1.

- In Section C, we investigate the range of feasible values for

the growth rate, 𝑟 .

- In Section D, we provide details on the agent architecture, the

introduced signal, the CIC metric, and the fairness indices.

- In Section E, we provide a thorough account of the simulation

results.

B PROOF OF THEOREM 2.1
For completeness, we re-state the control problem and Theorem

2.1. We want to find a piecewise continuous control 𝐸𝑡 , so as to

maximize the total revenue for a given episode duration 𝑇 (Eq. 11,

where 𝑈𝑡 (𝐸𝑡 ) is the cumulative revenue at time-step 𝑡 , given by

Eq. 12). The maximization problem can be solved using Optimal

Control Theory [13, 27].

max

𝐸𝑡

𝑇∑︁
𝑡=0

𝑈𝑡 (𝐸𝑡 )

subject to 𝑠𝑡+1 = 𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))
(11)

𝑈𝑡 (𝐸𝑡 ) = 𝑝𝑡𝐻 (𝐸𝑡 , 𝑠𝑡 ) − 𝑐𝑡 (12)

The optimal
12

control is given by the following theorem:

Theorem 2.1. The optimal control variables 𝐸∗𝑡 that solves the
maximization problem of Eq. 11 given the model dynamics described
in Section 2.2 is given by the following equation, where 𝜆𝑡 are the
adjoint variables of the Hamiltonians:

𝐸∗𝑡+1 =

{
𝐸𝑚𝑎𝑥 , if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))) ≥ 0

0, if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 ))) < 0

Proof. In order to decouple the state (𝑠𝑡 , the current resource

stock) and the control (𝐸𝑡 )
13

and simplify the calculations, we resort

to a change of variables.We define the new state𝑤𝑡 as the remaining

stock after harvest at time-step 𝑡 :

𝑤𝑡 ≜ 𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 )
Therefore,

𝑠𝑡+1 = 𝑤𝑡+1 + 𝐻 (𝐸𝑡+1, 𝑠𝑡+1) (13)

12
‘Optimal’ is used in a technical sense, as the strategy that maximizes the revenue

subject to the model equations, and it does not carry any moralistic implications.

13
In accordance to the literature on Optimal Control Theory [27], ‘state’ in the context

of the proof refers to the variable describing the the behavior of the underlying

dynamical system, and ‘control’ refers to the input function used to steer the state of

the system.

and

𝑠𝑡+1 = 𝐹 (𝑠𝑡 − 𝐻 (𝐸𝑡 , 𝑠𝑡 )) = 𝐹 (𝑤𝑡 ) (14)

Using Eq. 13 and 14, we can write the new state equation as:

𝑤𝑡+1 = 𝐹 (𝑤𝑡 ) − 𝐻 (𝐸𝑡+1, 𝐹 (𝑤𝑡 )) (15)

In the current form of the state equation (Eq. 15), the harvested

resources appear outside the nonlinear growth function 𝐹 (.), mak-

ing the following analysis significantly simpler.

Under optimal control, the resource will not get depleted before

the end of the horizon 𝑇 , thus 𝑞(𝑠𝑡 )𝐸𝑡 ≤ 𝑠𝑡 , ∀𝑡 < 𝑇 14
. We can

rewrite the total harvest as:

𝐻 (𝐸𝑡+1, 𝐹 (𝑤𝑡 )) = 𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1 (16)

The state equation (Eq. 15) becomes:

𝑤𝑡+1 = 𝐹 (𝑤𝑡 ) − 𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1
and the optimization problem:

𝑚𝑎𝑥

𝑇−1∑︁
𝑡=−1

(𝑝𝑡+1𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1 − 𝑐𝑡+1)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑡+1 = 𝐹 (𝑤𝑡 ) − 𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1
Let𝑤−1 = 𝑠0 = 𝑆𝑒𝑞 . Solving the optimization problem is equivalent

to finding the control that optimizes the Hamiltonians [13, 27]. Let

𝜆 = (𝜆−1, 𝜆0, . . . , 𝜆𝑇−1) denote the adjoint function. The Hamilton-

ian at time-step 𝑡 is given by:

H𝑡 = 𝑝𝑡+1𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1 − 𝑐𝑡+1 + 𝜆𝑡+1 (𝐹 (𝑤𝑡 ) − 𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1)
= (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑤𝑡 ))𝐸𝑡+1 − 𝑐𝑡+1 + 𝜆𝑡+1𝐹 (𝑤𝑡 )

(17)

The adjoint equations are given by [13]:

𝜆𝑡 =
𝜕H𝑡

𝜕𝑤𝑡

𝜆𝑇 = 0

𝜕H𝑡

𝜕𝑢𝑡
= 0 at 𝑢𝑡 = 𝑢

∗
𝑡

where 𝑢𝑡 is the control input, which corresponds to 𝐸𝑡+1 in our for-

mulation. The last condition corresponds to the maximization of the

HamiltonianH𝑡 in Eq. 17 for all time-steps 𝑡 [27, Chapter 23]. In our

case, Eq. 17 is linear in 𝐸𝑡+1 with coefficient (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑤𝑡 )).
Therefore, the optimal sequence of 𝐸𝑡+1 that maximizes Eq. 17 is

given based on the sign of the coefficient:

𝐸∗𝑡+1 =

{
𝐸𝑚𝑎𝑥 , if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑤𝑡 )) ≥ 0

0, if (𝑝𝑡+1 − 𝜆𝑡+1)𝑞(𝐹 (𝑤𝑡 )) < 0

14
Let us assume this is not the case and the optimal strategy would deplete the stock at

certain time-step𝑇𝑑𝑒𝑝 . That means that rewards are 0 and the optimal 𝐸𝑡 is arbitrary

for 𝑡 > 𝑇𝑑𝑒𝑝 . Using the modified equation for the total harvest (Eq. 16), we allow

𝐻 (𝐸𝑡 , 𝑠𝑡 ) > 𝑠𝑡 or 𝑠𝑡 −𝐻 (𝐸𝑡 , 𝑠𝑡 ) < 0. This would lead to 𝑠𝑡+1 = 𝐹 (𝑠𝑡 −𝐻 (𝐸𝑡 , 𝑠𝑡 )) <
0 ∀𝑡 > 𝑇𝑑𝑒𝑝 , i.e., the stock would become negative. In such a case, any positive effort

would decrease the revenue (since it would result in a negative harvest), thus the

optimal strategy would be to set 𝐸𝑡 = 0. Thus, using the modified equation for the

total harvest (Eq. 16), does not change the optimal solution.



(a) 𝑟 = 1 (b) 𝑟 = 2 (c) 𝑟 = −𝑊−1 (− 1

2𝑒
) ≈ 2.678 (d) 𝑟 = 4

Figure 8: Plot of the spawner-recruit function 𝐹 (·) for various growth rates: 𝑟 = 1, 2, −𝑊−1 (− 1

2𝑒 ) ≈ 2.678, and 4 (Fig. 8a, 8b, 8c, and
8d, respectively). The 𝑥-axis denotes the current stock level (𝑠𝑡 ), while the 𝑦-axis depicts the stock level on the next time-step,
assuming no harvest (i.e., 𝑠𝑡+1 = 𝐹 (𝑠𝑡 )). The dashed line indicates a stock level equal to 2𝑆𝑒𝑞 .

The optimal strategy therefore implements bang–bang controller,

which oscillates based on adjoint variable values 𝜆𝑡 , current state

𝑤𝑡 , and price 𝑝𝑡 .

□

C GROWTH RATE
The growth rate, 𝑟 , plays a significant role in the stability of the stock

dynamics. A high growth rate – and subsequently high population

density – can even lead to the extinction of the population due to

the collapse in behavior from overcrowding (a phenomenon known

as ‘behavioral sink’ [4, 5]). This is reflected by the spawner-recruit

function (Eq. 4) in our model. As depicted in Fig. 8, the higher the

growth rate, 𝑟 , the more skewed the stock dynamics. Specifically,

Fig. 8 plots the spawner-recruit function 𝐹 (·) for various growth
rates: 𝑟 = 1, 2, −𝑊−1 (− 1

2𝑒 ) ≈ 2.678, and 4 (Fig. 8a, 8b, 8c, and 8d,

respectively). The 𝑥-axis denotes the current stock level (𝑠𝑡 ), while

the𝑦-axis depicts the stock level on the next time-step, assuming no

harvest (i.e., 𝑠𝑡+1 = 𝐹 (𝑠𝑡 )). The dashed line indicates a stock level

equal to 2𝑆𝑒𝑞 . For a growth rate of 𝑟 = 4 for example (Fig. 8d), we

have a highly skewed growth model that can lead to the depletion

of the resource (high stock values (𝑠𝑡 ) result to 𝑠𝑡+1 < 𝛿 → 0, i.e.,

permanent depletion of the resource). For this reason, we want an

unskewed growth model, specifically we want the stock to remain

below two times the equilibrium stock point, i.e., 𝑠𝑡+1 ≤ 2𝑆𝑒𝑞
15
.

For this reason, we need to bound the growth rate according to the

following theorem:

TheoremC.1. For a continuous resource governed by the dynamics
of Section 2.2, the stock value does not exceed the limit of 2𝑆𝑒𝑞 , if
𝑟 ∈ [−𝑊 (−1/(2𝑒)),−𝑊−1 (−1/(2𝑒))] ≈ [0.232, 2.678], where𝑊𝑘 (·)
is the Lambert𝑊 function.

Proof. Let 𝑥 ≜ 𝑠𝑡 ≤ 2𝑆𝑒𝑞 for a time-step 𝑡 . We want 𝑠𝑡+1 ≤ 2𝑆𝑒𝑞 ,

thus we need to bound the maximum value of the spawner-recruit

function, 𝐹 (𝑥) (Eq. 4).
Taking the derivative:

𝜕

𝜕𝑥
𝐹 (𝑥) = 𝑒𝑟

(
1− 𝑥

𝑆𝑒𝑞

) (
1 − 𝑟𝑥

𝑆𝑒𝑞

)
We have that:

15
This limit is imposed by the chosen parameters of the model equations.

𝜕

𝜕𝑥
𝐹 (𝑥) = 0 ⇒ 𝑥 =

𝑆𝑒𝑞

𝑟
, 𝑟 ≠ 0 and 𝑆𝑒𝑞 ≠ 0

Thus the maximum value is:

𝐹

(
𝑆𝑒𝑞

𝑟

)
=
𝑆𝑒𝑞

𝑟
𝑒 (𝑟−1)

We want to bound the maximum value:

𝐹

(
𝑆𝑒𝑞

𝑟

)
≤ 2𝑆𝑒𝑞 ⇒ 𝑒 (𝑟−1)

𝑟
≤ 2 ⇒ 𝑒𝑟 − 2𝑒𝑟 ≤ 0

⇒ −𝑊
(
− 1

2𝑒

)
≤ 𝑟 ≤ −𝑊−1

(
− 1

2𝑒

)
where𝑊𝑘 (·) is the Lambert𝑊 function. −𝑊 (−1/(2𝑒)) ≈ 0.232 and

−𝑊−1 (−1/(2𝑒)) ≈ 2.678. □

D MODELING DETAILS
D.1 Agent Architecture Details
Recent work has demonstrated that code-level optimizations play

an important role in performance, both in terms of achieved re-

ward and underlying algorithmic behavior [14]. To minimize those

sources of stochasticity – and given that the focus of this work

is in the performance of the introduced technique and not of the

training algorithm – we opted to use RLlib
16

as our implementation

framework. Each agent uses a two-layer (64 neurons each) feed-

forward neural network for the policy approximation. The policies

are trained using the Proximal Policy Optimization (PPO) algorithm

[41]. All the hyper-parameters were left to the default values speci-

fied in Ray and RLlib
17
. For completeness, Table 1 presents a list of

the most relevant of them.

D.2 Introduced Signal: Implementation Details
The introduced signal was encoded as a 𝐺-dimensional one-hot

vector of fixed size, in which the high bit is shifted periodically. In

particular, its value at index 𝑖 at time-step 𝑡 is given by:

16
RLlib (https://docs.ray.io/en/latest/rllib.html) is an open-source library on top of

Ray (https://docs.ray.io/en/latest/index.html) for Multi-Agent Deep Reinforcement

Learning [29].

17
See https://docs.ray.io/en/latest/rllib-algorithms.html#ppo.

https://docs.ray.io/en/latest/rllib.html
https://docs.ray.io/en/latest/index.html
https://docs.ray.io/en/latest/rllib-algorithms.html#ppo


Table 1: List of hyper-parameters.

Parameter Value

Learning Rate (𝛼) 0.0001

Clipping Parameter 0.3

Value Function Clipping Parameter 10.0

KL Target 0.01

Discount Factor (𝛾 ) 0.99

GAE Parameter Lambda 1.0

Value Function Loss Coefficient 1.0

Entropy Coefficient 0.0

{
1 if𝑚𝑜𝑑 (𝑡 − 𝑡𝑖𝑛𝑖𝑡 , 𝐺) = 𝑖
0 otherwise

(18)

where 𝑡𝑖𝑛𝑖𝑡 is the random offset determined at the beginning of

each episode in order to avoid learning any bias towards certain

signal values.

D.3 Causal Influence of Communication (CIC):
Implementation Details

The Causal Influence of Communication (CIC) [31] estimates the

mutual information between the signal and the agent’s action. The

mutual information between two random variables �̃� and �̃� is de-

fined as the reduction of uncertainty (measured in terms of entropy

𝐻𝑆 (·)) in the value of �̃� with the observation of �̃� :

𝐼 (�̃� , �̃� ) = 𝐼 (�̃� , �̃� ) = 𝐻𝑆 (�̃� ) − 𝐻𝑆 (�̃� |�̃� ) = 𝐸
{
𝑙𝑜𝑔

(
𝑃
�̃� ,�̃�

(𝑥,𝑦)
𝑃
�̃�
(𝑥)𝑃

�̃�
(𝑦)

)}
The pseudo-code for calculating the CIC for a single agent is pre-

sented in Alg. 1. Note that the CIC implementation in [31] considers

a multi-dimensional, one-hot, discrete action space with accessible

probabilities for every action, while in our case we have a single,

continuous action (specifically, the effort 𝜖𝑛,𝑡 ). To solve this problem,

we discretize our action space into 𝑁𝑏𝑖𝑛𝑠 intervals between mini-

mum (E𝑚𝑖𝑛 = 0) and maximum (E𝑚𝑎𝑥 = 1) effort values, and each

interval is assumed to correspond to a single discrete action. Let 𝑎𝑖
denote the event of an action 𝜖𝑛,𝑡 belonging to interval 𝑖 . To calcu-

late the CIC value, we start by generating 𝑁𝑠𝑡𝑎𝑡𝑒𝑠 random ‘partial’

states (i.e., without signal), 𝜎−𝑔 , which are then concatenated with

each possible signal value to obtain a ‘complete’ state, 𝜎 = [𝑔 𝑗 , 𝜎−𝑔]
(Lines 5 - 7 of Alg. 1). Then, we estimate the probability of an action

given a signal value, 𝑝 (𝑎𝑖 |𝑔 𝑗 ), by generating 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 actions from

our policy given the ‘complete’ state (𝜋 (𝜎)), and normalizing the

number of instances in which the action belongs to a particular

bin with the total number of samples. The remaining aspects of the

calculation are the same as in the original implementation. In our

calculations we used 𝑁𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 100.

D.4 Fairness Metrics
We also evaluated the fairness of the final allocation, to ensure that

agents are not being exploited by the introduction of the signal. We

Algorithm 1: CIC Implementation (based on [31])

1 input: Agent policy 𝜋 (·)
2 𝑝 (𝑔 𝑗 ) = 1

𝐺
for all possible signals

3 Discretize the action space [0, E𝑚𝑎𝑥 ] into 𝑁𝑏𝑖𝑛𝑠 intervals.
4 for i=1 to 𝑁𝑠𝑡𝑎𝑡𝑒𝑠 do
5 Generate a state without a signal 𝜎−𝑔 randomly

6 for all possible signals 𝑔 𝑗 do
7 Generate agent observation 𝜎 = [𝑔 𝑗 , 𝜎−𝑔]
8 Estimate 𝑝 (𝑎𝑖 |𝑔 𝑗 ) by sampling 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 actions

from 𝜋 (𝜎)
9 𝑝 (𝑎𝑖 , 𝑔 𝑗 ) = 𝑝 (𝑎𝑖 |𝑔 𝑗 )𝑝 (𝑔 𝑗 )

10 end
11 𝑝 (𝑎𝑖 ) =

∑
𝑗 𝑝 (𝑎,𝑔 𝑗 )

12 𝐶𝐼𝐶+ = 1

𝑁𝑠𝑡𝑎𝑡𝑒𝑠

∑
𝑎𝑖 |𝑝 (𝑎𝑖 )≠0, 𝑔𝑗 𝑝 (𝑎,𝑔 𝑗 )𝑙𝑜𝑔(

𝑝 (𝑎,𝑔𝑗 )
𝑝 (𝑎)𝑝 (𝑔𝑗 ) )

13 end

used two of most established fairness metrics: the Jain index [22]

and the Gini coefficient [16]:

(a) The Jain index [22]: Widely used in network engineering

to determine whether users or applications receive a fair share of

system resources. It exhibits a lot of desirable properties such as:

population size independence, continuity, scale and metric inde-

pendence, and boundedness. For an allocation of 𝑁 agents, such

that the 𝑛th agent is alloted 𝑥𝑛 , the Jain index is given by Eq. 19.

J(x) ∈ [0, 1]. An allocation x = (𝑥1, . . . , 𝑥𝑁 )⊤ is considered fair, iff

J(x) = 1.

J(x) =

(
𝑁∑
𝑛=1

𝑥𝑛

)
2

𝑁
𝑁∑
𝑛=1

𝑥2𝑛

(19)

(b) The Gini coefficient [16]: One of the most commonly used

measures of inequality by economists intended to represent the

wealth distribution of a population of a nation. For an allocation

game of 𝑁 agents, such that the 𝑛th agent is alloted 𝑥𝑛 , the Gini

coefficient is given by Eq. 20.G(x) ≥ 0. A Gini coefficient of zero

expresses perfect equality, i.e., an allocation is fair iffG(x) = 0.

G(x) =

𝑁∑
𝑛=1

𝑁∑
𝑛′=1

|𝑥𝑛 − 𝑥𝑛′ |

2𝑁
𝑁∑
𝑛=1

𝑥𝑛

(20)

Both metrics showed that learning both with and without the

signal results in fair allocations, with no significant change with

the introduction of the signal (see Section E).

E SIMULATION RESULTS IN DETAIL
In this section we provide numerical values of the simulation results

presented in the main text. Specifically:

Tables (2 and 3), (4 and 5), (6 and 7), (8 and 9), and (10 and 11)

include the results (absolute values with and without the introduced

signal, relative difference, and Student’s T-test p-values) on social



welfare, episode lengths (in time-steps), training time (in number

of episodes), Jain index, and Gini coefficient, respectively.

Table 12 presents the CIC values.

Tables 13, 14, 15, 16, and 17 present the results on the aforemen-

tioned metrics for varying signal size, 𝐺 = {1, 𝑁
2
, 23, 𝑁 , 41, 3𝑁

2
}.

We also ran simulations with higher growth rate, specifically

𝑟 = 2. The results can be found in Tables 18, and 19. Every resource

has a natural upper limit on the size of the population it can sustain.

Fig. 2 shows that as the number of agents grow, we reach sustainable

strategies at higher equilibrium stock multipliers (𝑀𝑠 ). Thus, we

expect that as we increase the growth rate, the effect of the signal

will be even more pronounced in larger populations (𝑁 ) – which

is corroborated by the aforementioned Tables. The environment’s

ability to sustain a population also affects the counts of ‘active’

agents of Section 3.7.2. As we can see in Fig. 2, for a growth rate

of 𝑟 = 1, the resource is too scarce, thus, even with the addition

of the signal, the first sustainable strategy is reached at 𝑀𝑠 = 0.9.

This is a high equilibrium stock multiplier, close to the limit of

sustainable harvesting. As a result, the number of ‘active’ agents is

naturally really high because they do not need to harvest in turns.

By increasing the growth rate to 𝑟 = 2, we have an environment

that can sustain larger populations. Therefore, the first strategy that

does not result to an immediate depletion is reached much earlier,

and we can observe the emergence of a temporal convention (see

Table 20).

Finally, Table 20 shows the average number of agents in each

bin – 𝜖 ∈ [0− 0.33) (‘idle’), [0.33− 0.66) (‘moderate’), and [0.66− 1]
(‘active’) – starting from the first equilibrium stock multiplier (𝑀𝑠 )

where a non-depleting strategy was achieved in each setting.

All reported results are the average values over 8 trials. Note

also that, as was specified in Section 3.1.1, 𝐾 =
𝑆
𝑁,𝑟

𝐿𝑆𝐻

𝑁
=

𝑒𝑟 E𝑚𝑎𝑥

2(𝑒𝑟−1) .
Therefore, in the settings where the growth rate is 𝑟 = 1, 𝐾 ≈ 0.79,

while in the settings where 𝑟 = 2, 𝐾 ≈ 0.58.



Table 2: Social Welfare
Results (averaged over 8 trials) for increasing population size (𝑁 ∈ [2, 64]), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced
signal, for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 0.36 0.36 0.76 0.76 1.50 1.51 2.92 2.92 5.65 5.65 10.96 10.96

𝑀𝑠 = 0.3 0.60 0.60 1.28 1.28 2.64 2.64 5.38 4.81 8.26 8.61 16.38 15.29

𝑀𝑠 = 0.4 3.68 43.46 2.30 2.89 4.70 160.05 5.77 130.37 10.66 10.73 20.45 21.10

𝑀𝑠 = 0.5 122.30 111.57 179.20 186.65 141.89 193.53 70.10 154.00 12.81 39.35 25.67 25.81

𝑀𝑠 = 0.6 143.23 135.73 206.14 232.03 174.52 215.93 176.30 157.74 15.20 130.34 30.37 33.12

𝑀𝑠 = 0.7 172.69 179.28 181.15 223.18 121.33 211.70 196.26 202.63 34.14 196.57 41.49 52.57

𝑀𝑠 = 0.8 176.33 199.11 200.64 275.35 200.10 291.44 247.90 304.74 86.95 316.08 62.28 80.49

𝑀𝑠 = 0.9 197.49 207.15 244.93 316.75 327.91 395.14 341.24 499.66 165.75 637.30 101.12 1517.30

𝑀𝑠 = 1.0 223.28 229.01 339.33 371.72 482.25 524.64 585.71 687.65 592.26 1717.98 297.34 5350.52

𝑀𝑠 = 1.1 252.41 250.56 418.38 429.24 674.72 707.17 1315.68 1348.68 2611.96 3415.66 5225.12 8317.41

𝑀𝑠 = 1.2 280.61 278.61 523.86 532.54 1046.36 1051.10 2091.35 2120.13 4180.33 4784.53 8367.87 9900.67

Table 3: Social Welfare (Relative difference & p-values)
(i) Relative difference in Social Welfare when signal of cardinality 𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 − Result𝐺=1)/Result𝐺=1,
where Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
for varying population size (𝑁 ∈ [2, 64]) and environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

(%) p (%) p (%) p (%) p (%) p (%) p

𝑀𝑠 = 0.2 0.0 0.87876 0.2 0.57508 0.2 0.47454 -0.1 0.47064 0.1 0.36608 0.0 0.93297

𝑀𝑠 = 0.3 -0.3 0.48043 0.2 0.57516 0.1 0.82779 -10.5 0.02451 4.2 0.00000 -6.6 0.00000

𝑀𝑠 = 0.4 1082.1 0.01102 25.8 0.16861 3305.9 0.00000 2158.1 0.00000 0.7 0.74501 3.2 0.01327

𝑀𝑠 = 0.5 -8.8 0.00453 4.2 0.42501 36.4 0.00261 119.7 0.00566 207.2 0.14710 0.6 0.48706

𝑀𝑠 = 0.6 -5.2 0.01401 12.6 0.01795 23.7 0.00033 -10.5 0.48519 757.6 0.00001 9.1 0.00000

𝑀𝑠 = 0.7 3.8 0.00161 23.2 0.00000 74.5 0.00000 3.2 0.83672 475.7 0.00000 26.7 0.00000

𝑀𝑠 = 0.8 12.9 0.00032 37.2 0.00013 45.6 0.00105 22.9 0.00886 263.5 0.00000 29.2 0.00000

𝑀𝑠 = 0.9 4.9 0.06719 29.3 0.00008 20.5 0.12549 46.4 0.00355 284.5 0.00000 1400.5 0.00000

𝑀𝑠 = 1.0 2.6 0.03517 9.5 0.02099 8.8 0.01232 17.4 0.00014 190.1 0.00000 1699.5 0.00000

𝑀𝑠 = 1.1 -0.7 0.41309 2.6 0.12172 4.8 0.01402 2.5 0.00002 30.8 0.00000 59.2 0.00000

𝑀𝑠 = 1.2 -0.7 0.56215 1.7 0.00477 0.5 0.09644 1.4 0.00000 14.5 0.00000 18.3 0.00000



Table 4: Episode Length (#time-steps)
Results (averaged over 8 trials) for increasing population size (𝑁 ∈ [2, 64]), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced
signal, for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 2.04 2.04 2.14 2.14 2.05 2.06 2.01 2.01 1.99 2.00 1.96 1.96

𝑀𝑠 = 0.3 2.75 2.72 2.83 2.82 3.63 3.66 5.17 3.61 1.98 2.67 2.20 1.19

𝑀𝑠 = 0.4 25.17 276.52 6.50 8.50 11.26 491.08 6.15 474.22 2.25 1.95 1.44 2.07

𝑀𝑠 = 0.5 499.79 499.94 463.01 500.00 481.93 500.00 240.27 496.08 1.90 119.85 2.62 2.32

𝑀𝑠 = 0.6 499.98 499.96 498.51 499.49 499.90 499.72 499.85 495.69 2.36 438.24 2.72 6.78

𝑀𝑠 = 0.7 500.00 500.00 499.24 500.00 499.49 500.00 500.00 500.00 70.78 500.00 10.00 31.33

𝑀𝑠 = 0.8 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 200.63 500.00 22.00 66.68

𝑀𝑠 = 0.9 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 275.00 500.00 53.00 500.00

𝑀𝑠 = 1.0 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

𝑀𝑠 = 1.1 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

𝑀𝑠 = 1.2 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00

Table 5: Episode Length (Relative difference & p-values)
(i) Relative difference in Episode Length when signal of cardinality 𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 − Result𝐺=1)/Result𝐺=1,
where Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
for varying population size (𝑁 ∈ [2, 64]) and environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).
NaN values in the p-values column are due to having only a single data point; both cases (with and without the signal) have
the same episode length in all the trials.

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

(%) p (%) p (%) p (%) p (%) p (%) p

𝑀𝑠 = 0.2 0.0 0.99280 0.0 0.98122 0.7 0.43808 -0.5 0.34488 0.6 0.32379 0.0 0.97624

𝑀𝑠 = 0.3 -0.9 0.37060 -0.2 0.83869 0.9 0.48086 -30.2 0.02482 34.7 0.00000 -46.0 0.00000

𝑀𝑠 = 0.4 998.6 0.00924 30.7 0.16075 4261.1 0.00000 7610.6 0.00000 -13.3 0.52170 44.2 0.04255

𝑀𝑠 = 0.5 0.0 0.36593 8.0 0.04688 3.8 0.20338 106.5 0.01043 6209.4 0.14849 -11.8 0.56968

𝑀𝑠 = 0.6 0.0 0.58271 0.2 0.36518 0.0 0.56152 -0.8 0.02847 18503.0 0.00001 149.4 0.00001

𝑀𝑠 = 0.7 0.0 NaN 0.2 0.13837 0.1 0.10198 0.0 NaN 606.4 0.00001 213.3 0.00000

𝑀𝑠 = 0.8 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 149.2 0.00418 203.1 0.00000

𝑀𝑠 = 0.9 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 81.8 0.01919 843.4 0.00000

𝑀𝑠 = 1.0 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN

𝑀𝑠 = 1.1 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN

𝑀𝑠 = 1.2 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN 0.0 NaN



Table 6: Training Time (#episodes)
Results (averaged over 8 trials) for increasing population size (𝑁 ∈ [2, 64]), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced
signal, for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

𝑀𝑠 = 0.3 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00 5000.00

𝑀𝑠 = 0.4 5000.00 5000.00 5000.00 5000.00 5000.00 4990.13 5000.00 4960.13 5000.00 5000.00 5000.00 5000.00

𝑀𝑠 = 0.5 4955.38 4340.63 4971.25 3408.75 5000.00 3389.50 5000.00 4847.88 5000.00 5000.00 5000.00 5000.00

𝑀𝑠 = 0.6 3037.38 2268.00 3822.75 2013.75 3903.00 3051.63 4583.13 2797.50 5000.00 4081.13 5000.00 5000.00

𝑀𝑠 = 0.7 1536.13 1008.13 2478.63 1328.00 3104.50 1880.00 3213.00 2680.00 4937.00 3026.00 5000.00 5000.00

𝑀𝑠 = 0.8 1004.00 1124.00 1968.00 1296.00 3088.00 2064.00 3778.00 2116.00 4887.00 2551.00 5000.00 5000.00

𝑀𝑠 = 0.9 1248.00 936.00 2168.00 1416.00 3025.00 1412.00 3810.00 2100.00 4536.00 2896.00 5000.00 2581.00

𝑀𝑠 = 1.0 864.00 776.00 1692.00 1252.00 2116.00 1612.00 2740.00 1788.00 3393.00 2334.00 1484.00 1965.00

𝑀𝑠 = 1.1 684.00 800.00 1028.00 1376.00 1284.00 1436.00 1164.00 1536.00 1218.00 1832.00 1193.00 1172.00

𝑀𝑠 = 1.2 840.00 780.00 1132.00 1040.00 1004.00 1212.00 932.00 1116.00 949.00 844.00 897.00 816.00

Table 7: Training Time (Relative difference & p-values)
(i) Relative difference in Training Time when signal of cardinality 𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 − Result𝐺=1)/Result𝐺=1,
where Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
for varying population size (𝑁 ∈ [2, 64]) and environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

(%) p (%) p (%) p (%) p (%) p (%) p

𝑀𝑠 = 0.2 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000

𝑀𝑠 = 0.3 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000 0.0 0.00000

𝑀𝑠 = 0.4 0.0 0.00000 0.0 0.00000 -0.2 0.00000 -0.8 0.00000 0.0 0.00000 0.0 0.00000

𝑀𝑠 = 0.5 -12.4 0.00000 -31.4 0.00000 -32.2 0.00000 -3.0 0.00000 0.0 0.00000 0.0 0.00000

𝑀𝑠 = 0.6 -25.3 0.00000 -47.3 0.00006 -21.8 0.00013 -39.0 0.00003 -18.4 0.00000 0.0 0.00000

𝑀𝑠 = 0.7 -34.4 0.00000 -46.4 0.02193 -39.4 0.00396 -16.6 0.00666 -38.7 0.00000 0.0 0.00000

𝑀𝑠 = 0.8 12.0 0.01448 -34.1 0.00266 -33.2 0.00228 -44.0 0.00128 -47.8 0.00000 0.0 0.00000

𝑀𝑠 = 0.9 -25.0 0.00462 -34.7 0.01569 -53.3 0.00583 -44.9 0.00221 -36.2 0.00001 -48.4 0.00000

𝑀𝑠 = 1.0 -10.2 0.00137 -26.0 0.02400 -23.8 0.01508 -34.7 0.03351 -31.2 0.00211 32.4 0.00000

𝑀𝑠 = 1.1 17.0 0.00000 33.9 0.00024 11.8 0.00006 32.0 0.00000 50.4 0.00001 -1.8 0.00000

𝑀𝑠 = 1.2 -7.1 0.00847 -8.1 0.00002 20.7 0.00000 19.7 0.00000 -11.1 0.00000 -9.0 0.00000



Table 8: Jain Index (higher is fairer)
Results (averaged over 8 trials) for increasing population size (𝑁 ∈ [2, 64]), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced
signal, for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 0.99984 0.99973 0.99976 0.99984 0.99963 0.99966 0.99967 0.99961 0.99943 0.99947 0.99932 0.99941

𝑀𝑠 = 0.3 0.99973 0.99991 0.99984 0.99981 0.99967 0.99974 0.99963 0.99959 0.99958 0.99930 0.99936 0.99942

𝑀𝑠 = 0.4 0.99210 0.99299 0.99910 0.99846 0.99119 0.98808 0.98691 0.99370 0.98603 0.99526 0.99063 0.99648

𝑀𝑠 = 0.5 0.98061 0.98251 0.97149 0.97895 0.97910 0.98978 0.98376 0.99416 0.98946 0.99694 0.99489 0.99773

𝑀𝑠 = 0.6 0.98252 0.99911 0.98507 0.99479 0.97847 0.99246 0.98147 0.99599 0.99898 0.99628 0.99935 0.99831

𝑀𝑠 = 0.7 0.99317 0.99996 0.98657 0.99239 0.98647 0.99458 0.98862 0.99601 0.99635 0.99660 1.00000 0.99787

𝑀𝑠 = 0.8 0.99705 0.99872 0.98081 0.99269 0.97903 0.99534 0.98679 0.99645 0.99023 0.99733 1.00000 0.99864

𝑀𝑠 = 0.9 0.99780 0.99535 0.97744 0.99304 0.97841 0.99581 0.98236 0.99704 0.99234 0.99810 0.99999 0.99912

𝑀𝑠 = 1.0 0.98674 0.99740 0.98892 0.99454 0.99094 0.99715 0.99441 0.99876 0.99578 0.99924 1.00000 0.99929

𝑀𝑠 = 1.1 0.99620 0.99498 0.99770 0.99737 0.99990 0.99976 0.99999 0.99999 1.00000 0.99945 0.99999 0.99909

𝑀𝑠 = 1.2 0.99855 0.99956 0.99998 0.99993 0.99999 0.99999 1.00000 0.99998 0.99999 0.99917 0.99999 0.99876

Table 9: Jain Index (Relative difference & p-values)
(i) Relative difference in Jain Index when signal of cardinality𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 −Result𝐺=1)/Result𝐺=1, where
Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
for varying population size (𝑁 ∈ [2, 64]) and environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

(%) p (%) p (%) p (%) p (%) p (%) p

𝑀𝑠 = 0.2 0.0 0.62689 0.0 0.19181 0.0 0.73995 0.0 0.43584 0.0 0.67344 0.0 0.12180

𝑀𝑠 = 0.3 0.0 0.19431 0.0 0.74755 0.0 0.40216 0.0 0.68556 0.0 0.00316 0.0 0.24335

𝑀𝑠 = 0.4 0.1 0.85540 -0.1 0.47459 -0.3 0.31067 0.7 0.00312 0.9 0.00014 0.6 0.00000

𝑀𝑠 = 0.5 0.2 0.88279 0.8 0.27542 1.1 0.08226 1.1 0.00027 0.8 0.00105 0.3 0.00025

𝑀𝑠 = 0.6 1.7 0.05974 1.0 0.02806 1.4 0.00501 1.5 0.00055 -0.3 0.00000 -0.1 0.00000

𝑀𝑠 = 0.7 0.7 0.16061 0.6 0.25648 0.8 0.00610 0.7 0.00002 0.0 0.94743 -0.2 0.00000

𝑀𝑠 = 0.8 0.2 0.33436 1.2 0.03393 1.7 0.00015 1.0 0.00049 0.7 0.16118 -0.1 0.00000

𝑀𝑠 = 0.9 -0.2 0.36223 1.6 0.00338 1.8 0.00011 1.5 0.00000 0.6 0.07503 -0.1 0.00000

𝑀𝑠 = 1.0 1.1 0.07827 0.6 0.08720 0.6 0.00834 0.4 0.00017 0.3 0.00165 -0.1 0.00000

𝑀𝑠 = 1.1 -0.1 0.49041 0.0 0.64625 0.0 0.11982 0.0 0.18597 -0.1 0.00006 -0.1 0.00000

𝑀𝑠 = 1.2 0.1 0.05751 0.0 0.15660 0.0 0.38672 0.0 0.00003 -0.1 0.00000 -0.1 0.00000



Table 10: Gini Coefficient (lower is fairer)
Results (averaged over 8 trials) for increasing population size (𝑁 ∈ [2, 64]), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced
signal, for environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 0.00583 0.00551 0.00764 0.00663 0.01048 0.00956 0.00991 0.01087 0.01323 0.01282 0.01459 0.01356

𝑀𝑠 = 0.3 0.00674 0.00390 0.00644 0.00656 0.00983 0.00855 0.01040 0.01085 0.01135 0.01468 0.01416 0.01345

𝑀𝑠 = 0.4 0.03897 0.03083 0.01409 0.01667 0.05032 0.05879 0.06336 0.04329 0.06617 0.03841 0.05399 0.03328

𝑀𝑠 = 0.5 0.05571 0.05590 0.08869 0.07415 0.07528 0.05419 0.06839 0.04166 0.05646 0.03109 0.03890 0.02668

𝑀𝑠 = 0.6 0.05350 0.01113 0.06094 0.03547 0.07879 0.04711 0.07156 0.03444 0.01466 0.03405 0.01272 0.02298

𝑀𝑠 = 0.7 0.02754 0.00215 0.05777 0.04123 0.06279 0.03842 0.05894 0.03514 0.01252 0.03259 0.00038 0.02537

𝑀𝑠 = 0.8 0.02160 0.01446 0.07129 0.04442 0.07916 0.03539 0.06264 0.03255 0.03503 0.02884 0.00012 0.02059

𝑀𝑠 = 0.9 0.01901 0.02562 0.08016 0.03768 0.07998 0.03427 0.07229 0.02973 0.03275 0.02440 0.00027 0.01639

𝑀𝑠 = 1.0 0.04736 0.02190 0.05277 0.03522 0.04490 0.02877 0.03175 0.01899 0.01802 0.01524 0.00012 0.01480

𝑀𝑠 = 1.1 0.02741 0.03299 0.02376 0.02583 0.00392 0.00692 0.00119 0.00191 0.00035 0.01244 0.00038 0.01670

𝑀𝑠 = 1.2 0.01585 0.00951 0.00138 0.00358 0.00102 0.00154 0.00078 0.00235 0.00083 0.01604 0.00113 0.01958

Table 11: Gini Coefficient (Relative difference & p-values)
(i) Relative difference in Gini Coefficient when signal of cardinality 𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 − Result𝐺=1)/Result𝐺=1,
where Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
for varying population size (𝑁 ∈ [2, 64]) and environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 =2 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

(%) p (%) p (%) p (%) p (%) p (%) p

𝑀𝑠 = 0.2 -5.5 0.89907 -13.2 0.38327 -8.7 0.54803 9.7 0.30792 -3.2 0.66529 -7.0 0.10096

𝑀𝑠 = 0.3 -42.1 0.18044 1.9 0.93581 -13.0 0.32875 4.4 0.75014 29.3 0.00649 -5.0 0.29447

𝑀𝑠 = 0.4 -20.9 0.55214 18.3 0.65124 16.8 0.32715 -31.7 0.00172 -42.0 0.00005 -38.3 0.00000

𝑀𝑠 = 0.5 0.3 0.99318 -16.4 0.29791 -28.0 0.07229 -39.1 0.00045 -44.9 0.00016 -31.4 0.00013

𝑀𝑠 = 0.6 -79.2 0.01921 -41.8 0.01744 -40.2 0.00115 -51.9 0.00000 132.2 0.00000 80.6 0.00000

𝑀𝑠 = 0.7 -92.2 0.05186 -28.6 0.19899 -38.8 0.00318 -40.4 0.00002 160.3 0.12355 6619.1 0.00000

𝑀𝑠 = 0.8 -33.1 0.33714 -37.7 0.01429 -55.3 0.00008 -48.0 0.00005 -17.7 0.71927 16702.9 0.00000

𝑀𝑠 = 0.9 34.8 0.51138 -53.0 0.00151 -57.2 0.00001 -58.9 0.00000 -25.5 0.51399 6016.9 0.00000

𝑀𝑠 = 1.0 -53.8 0.08247 -33.3 0.06736 -35.9 0.00585 -40.2 0.00000 -15.4 0.16010 12183.2 0.00000

𝑀𝑠 = 1.1 20.3 0.40907 8.7 0.53123 76.5 0.05059 60.5 0.01015 3416.3 0.00000 4296.4 0.00000

𝑀𝑠 = 1.2 -40.0 0.13271 159.9 0.05210 50.1 0.29175 201.1 0.00000 1839.3 0.00000 1640.3 0.00000



Table 12: CIC values
Results (averaged over the 8 trials and the agents in the population) for increasing population size (𝑁 ∈ [4, 64]) and environ-
ments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

𝑀𝑠 = 0.2 0.037 0.043 0.046 0.047 0.048

𝑀𝑠 = 0.3 0.037 0.043 0.047 0.050 0.054

𝑀𝑠 = 0.4 0.424 1.008 0.611 0.122 0.188

𝑀𝑠 = 0.5 0.908 0.841 0.542 0.225 0.144

𝑀𝑠 = 0.6 0.798 0.658 0.281 0.530 0.130

𝑀𝑠 = 0.7 0.710 0.710 0.454 0.292 0.210

𝑀𝑠 = 0.8 0.741 0.668 0.513 0.267 0.210

𝑀𝑠 = 0.9 0.465 0.429 0.378 0.251 0.266

𝑀𝑠 = 1.0 0.406 0.513 0.265 0.382 0.331

𝑀𝑠 = 1.1 0.141 0.180 0.135 0.221 0.296

𝑀𝑠 = 1.2 0.080 0.095 0.150 0.218 0.301

Table 13: Social Welfare
Results (averaged over 8 trials) for varying signal size (𝐺 = {1, 𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, where 𝑁 = 32) and equilibrium stock multiplier

(𝑀𝑠 values of 0.7, 0.8 and 0.9). The following results include:
(i) Absolute values,
(ii) Relative difference (%), i.e., (Result𝐺=𝑋 −Result𝐺=1)/Result𝐺=1, where Result𝐺=𝑋 denotes the achieved result using a signal
of cardinality 𝑋 ∈ {𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, and

(iii) Student’s T-test p-values with respect to 𝐺 = 1

Absolute Values Relative Difference (%) p-values
𝐺 = 1 𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2

𝑀𝑠 = 0.7 34.14 184.82 158.95 196.57 219.33 221.43 441.3 365.6 475.7 542.4 548.5 0.00000 0.00014 0.00000 0.00000 0.00000

𝑀𝑠 = 0.8 86.95 249.51 260.94 316.08 376.67 423.03 187.0 200.1 263.5 333.2 386.5 0.00005 0.00004 0.00000 0.00000 0.00000

𝑀𝑠 = 0.9 165.75 431.43 497.05 637.30 784.72 970.48 160.3 199.9 284.5 373.4 485.5 0.00030 0.00007 0.00000 0.00000 0.00000

Table 14: Episode Length (#time-steps)
Results (averaged over 8 trials) for varying signal size (𝐺 = {1, 𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, where 𝑁 = 32) and equilibrium stock multiplier

(𝑀𝑠 values of 0.7, 0.8 and 0.9). The following results include:
(i) Absolute values,
(ii) Relative difference (%), i.e., (Result𝐺=𝑋 −Result𝐺=1)/Result𝐺=1, where Result𝐺=𝑋 denotes the achieved result using a signal
of cardinality 𝑋 ∈ {𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, and

(iii) Student’s T-test p-values with respect to 𝐺 = 1

Absolute Values Relative Difference (%) p-values
𝐺 = 1 𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2

𝑀𝑠 = 0.7 70.78 500.00 440.16 500.00 500.00 500.00 606.4 521.9 606.4 606.4 606.4 0.00001 0.00072 0.00001 0.00001 0.00001

𝑀𝑠 = 0.8 200.63 500.00 500.00 500.00 500.00 500.00 149.2 149.2 149.2 149.2 149.2 0.00418 0.00418 0.00418 0.00418 0.00418

𝑀𝑠 = 0.9 275.00 500.00 500.00 500.00 500.00 500.00 81.8 81.8 81.8 81.8 81.8 0.01919 0.01919 0.01919 0.01919 0.01919



Table 15: Training Time (#episodes)
Results (averaged over 8 trials) for varying signal size (𝐺 = {1, 𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, where 𝑁 = 32) and equilibrium stock multiplier

(𝑀𝑠 values of 0.7, 0.8 and 0.9). The following results include:
(i) Absolute values,
(ii) Relative difference (%), i.e., (Result𝐺=𝑋 −Result𝐺=1)/Result𝐺=1, where Result𝐺=𝑋 denotes the achieved result using a signal
of cardinality 𝑋 ∈ {𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, and

(iii) Student’s T-test p-values with respect to 𝐺 = 1

Absolute Values Relative Difference (%) p-values
𝐺 = 1 𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2

𝑀𝑠 = 0.7 4757.00 4039.00 3493.00 3279.00 3147.00 3767.00 -15.1 -26.6 -31.1 -33.8 -20.8 0.00001 0.01975 0.00001 0.00000 0.00001

𝑀𝑠 = 0.8 4875.75 3572.00 2933.00 2890.00 2680.00 3228.00 -26.7 -39.8 -40.7 -45.0 -33.8 0.01919 0.00102 0.01919 0.00000 0.01919

𝑀𝑠 = 0.9 4511.13 3479.00 2386.00 2896.00 2575.00 2123.00 -22.9 -47.1 -35.8 -42.9 -52.9 0.01919 0.00004 0.01919 0.00003 0.01919

Table 16: Jain Index (higher is better)
Results (averaged over 8 trials) for varying signal size (𝐺 = {1, 𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, where 𝑁 = 32) and equilibrium stock multiplier

(𝑀𝑠 values of 0.7, 0.8 and 0.9). The following results include:
(i) Absolute values,
(ii) Relative difference (%), i.e., (Result𝐺=𝑋 −Result𝐺=1)/Result𝐺=1, where Result𝐺=𝑋 denotes the achieved result using a signal
of cardinality 𝑋 ∈ {𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, and

(iii) Student’s T-test p-values with respect to 𝐺 = 1

Absolute Values Relative Difference (%) p-values
𝐺 = 1 𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2

𝑀𝑠 = 0.7 0.99635 0.99489 0.99594 0.99660 0.99744 0.99686 -0.1 0.0 0.0 0.1 0.1 0.69758 0.91342 0.94743 0.77056 0.89174

𝑀𝑠 = 0.8 0.99023 0.99517 0.99665 0.99733 0.99742 0.99780 0.5 0.6 0.7 0.7 0.8 0.32098 0.20210 0.16118 0.15617 0.13698

𝑀𝑠 = 0.9 0.99234 0.99718 0.99777 0.99810 0.99863 0.99884 0.5 0.5 0.6 0.6 0.7 0.12907 0.09127 0.07503 0.05402 0.04728

Table 17: Gini Coefficient
Results (averaged over 8 trials) for varying signal size (𝐺 = {1, 𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, where 𝑁 = 32) and equilibrium stock multiplier

(𝑀𝑠 values of 0.7, 0.8 and 0.9). The following results include:
(i) Absolute values,
(ii) Relative difference (%), i.e., (Result𝐺=𝑋 −Result𝐺=1)/Result𝐺=1, where Result𝐺=𝑋 denotes the achieved result using a signal
of cardinality 𝑋 ∈ {𝑁

2
, 23, 𝑁 , 41, 3𝑁

2
}, and

(iii) Student’s T-test p-values with respect to 𝐺 = 1

Absolute Values Relative Difference (%) p-values
𝐺 = 1 𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2
𝐺 = 𝑁

2
𝐺 = 23 𝐺 = 𝑁 𝐺 = 41 𝐺 = 3𝑁

2

𝑀𝑠 = 0.7 0.01252 0.04010 0.03525 0.03259 0.02801 0.03110 220.3 181.5 160.3 123.7 148.4 0.04090 0.08751 0.12355 0.22435 0.15164

𝑀𝑠 = 0.8 0.03503 0.03873 0.03253 0.02884 0.02838 0.02590 10.6 -7.1 -17.7 -19.0 -26.1 0.82971 0.88448 0.71927 0.69934 0.59813

𝑀𝑠 = 0.9 0.03275 0.02992 0.02646 0.02440 0.02065 0.01885 -8.7 -19.2 -25.5 -37.0 -42.4 0.82380 0.62158 0.51399 0.34755 0.28352



Table 18: Social Welfare, Episode Length, Training Time, Jain Index, Gini Coefficient
Results (averaged over 8 trials) for higher growth rate (𝑟 = 2), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced signal, for
environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ), and population size 𝑁 = 64.

Social Welfare Episode Length Training Time Jain Index Gini Coefficient
𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2 7.52 7.53 1.04 1.05 5000.00 5000.00 0.99955 0.99959 0.01193 0.01129

𝑀𝑠 = 0.3 11.65 11.57 1.15 1.13 5000.00 5000.00 0.99953 0.99963 0.01215 0.01084

𝑀𝑠 = 0.4 21.00 19.89 2.54 2.24 5000.00 5000.00 0.99776 0.99795 0.02611 0.02549

𝑀𝑠 = 0.5 23.52 22.52 2.52 2.19 5000.00 5000.00 0.99467 0.99724 0.04075 0.02941

𝑀𝑠 = 0.6 23.91 26.33 1.71 2.72 5000.00 5000.00 0.99243 0.99696 0.04894 0.03108

𝑀𝑠 = 0.7 26.62 354.47 3.08 306.34 5000.00 5000.00 0.99066 0.99728 0.05172 0.02909

𝑀𝑠 = 0.8 219.16 922.99 190.03 453.91 4957.13 5000.00 0.97867 0.99834 0.06876 0.02285

𝑀𝑠 = 0.9 1320.48 7171.94 500.00 500.00 4900.00 2053.00 0.97524 0.99911 0.07791 0.01666

𝑀𝑠 = 1.0 2490.16 16849.49 500.00 500.00 3003.00 909.00 0.99858 0.99890 0.00612 0.01856

𝑀𝑠 = 1.1 17286.26 18737.69 500.00 500.00 853.00 1193.00 0.99997 0.99914 0.00192 0.01640

𝑀𝑠 = 1.2 20740.25 19354.80 500.00 500.00 781.00 1427.00 0.99996 0.99930 0.00220 0.01480

Table 19: Social Welfare, Episode Length, Training Time, Jain Index, Gini Coefficient
(i) Relative difference in the achieved result when signal of cardinality𝐺 = 𝑁 is introduced ((Result𝐺=𝑁 −Result𝐺=1)/Result𝐺=1,
where Result𝐺=𝑋 denotes the achieved result using a signal of cardinality 𝑋 ), and
(ii) Student’s T-test p-values,
Results (averaged over 8 trials) for higher growth rate (𝑟 = 2), with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced signal, for
environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ), and population size 𝑁 = 64.

Social Welfare Episode Length Training Time Jain Index Gini Coefficient
(%) p-value (%) p-value (%) p-value (%) p-value (%) p-value

𝑀𝑠 = 0.2 0.1 0.19975 0.2 0.17555 0.0 NaN 0.0 0.21075 -5.4 0.20205

𝑀𝑠 = 0.3 -0.7 0.00261 -1.7 0.00274 0.0 NaN 0.0 0.00050 -10.8 0.00096

𝑀𝑠 = 0.4 -5.3 0.66393 -11.8 0.63772 0.0 NaN 0.0 0.41637 -2.4 0.65179

𝑀𝑠 = 0.5 -4.2 0.52530 -13.1 0.53060 0.0 NaN 0.3 0.00004 -27.8 0.00001

𝑀𝑠 = 0.6 10.1 0.01996 59.3 0.02644 0.0 NaN 0.5 0.00000 -36.5 0.00000

𝑀𝑠 = 0.7 1231.4 0.00000 9862.3 0.00000 0.0 NaN 0.7 0.00005 -43.8 0.00001

𝑀𝑠 = 0.8 321.1 0.00006 138.9 0.01041 0.9 0.33428 2.0 0.00097 -66.8 0.00204

𝑀𝑠 = 0.9 443.1 0.00000 0.0 NaN -58.1 0.00000 2.4 0.00000 -78.6 0.00000

𝑀𝑠 = 1.0 576.6 0.00000 0.0 NaN -69.7 0.00000 0.0 0.51998 203.5 0.00000

𝑀𝑠 = 1.1 8.4 0.00000 0.0 NaN 39.9 0.00117 -0.1 0.00000 753.5 0.00000

𝑀𝑠 = 1.2 -6.7 0.00000 0.0 NaN 82.7 0.00000 -0.1 0.00000 573.6 0.00000



Table 20: Average number of agents in each bin (i.e., harvesting with effort 𝜖 ∈ [0 − 0.33) (‘idle’), [0.33 − 0.66) (‘moderate’), and
[0.66− 1] (‘active’)). The presented values start from the first equilibrium stock multiplier (𝑀𝑠 ) where a non-depleting strategy
was achieved in each setting.
Results (averaged over 8 trials) for increasing population size, with (𝐺 = 𝑁 ) and without (𝐺 = 1) the introduced signal, for
environments of decreasing difficulty (increasing 𝑆𝑒𝑞 ∝ 𝑀𝑠 ).

Number of ‘idle’ agents: 𝜖 ∈ [0 − 0.33)
𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64, 𝑟 = 1 𝑁 = 64, 𝑟 = 2

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2

𝑀𝑠 = 0.3

𝑀𝑠 = 0.4 4.9 9.4
𝑀𝑠 = 0.5 0.4 3.7 6.9

𝑀𝑠 = 0.6 0.0 2.8 0.0 5.0 12.1
𝑀𝑠 = 0.7 0.0 1.8 0.0 3.3 6.6 31.6
𝑀𝑠 = 0.8 0.0 1.0 0.0 2.0 3.6 5.9

𝑀𝑠 = 0.9 0.0 0.4 0.0 0.8 1.4 2.0 1.8

𝑀𝑠 = 1.0 0.0 0.2 0.0 0.2 0.0 0.3 0.0 1.2 0.0 1.6

𝑀𝑠 = 1.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.6 0.0 1.3

𝑀𝑠 = 1.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.9 0.0 1.1

Number of ‘moderate’ agents: 𝜖 ∈ [0.33 − 0.66)
𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64, 𝑟 = 1 𝑁 = 64, 𝑟 = 2

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2

𝑀𝑠 = 0.3

𝑀𝑠 = 0.4 0.7 2.0
𝑀𝑠 = 0.5 6.8 1.0 2.5

𝑀𝑠 = 0.6 6.4 1.3 13.4 3.0 5.8
𝑀𝑠 = 0.7 3.6 1.5 6.1 3.0 5.6 6.6
𝑀𝑠 = 0.8 1.6 1.5 1.5 2.3 4.8 11.6

𝑀𝑠 = 0.9 0.4 0.9 0.6 1.6 3.3 7.8 7.8

𝑀𝑠 = 1.0 0.1 0.5 0.1 0.5 0.4 1.5 0.0 6.3 0.1 6.6

𝑀𝑠 = 1.1 0.0 0.0 0.0 0.0 0.0 0.9 0.0 6.4 0.0 5.9

𝑀𝑠 = 1.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0 7.0 0.0 5.7

Number of ‘active’ agents: 𝜖 ∈ [0.66 − 1]
𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64, 𝑟 = 1 𝑁 = 64, 𝑟 = 2

𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁 𝐺 = 1 𝐺 = 𝑁

𝑀𝑠 = 0.2

𝑀𝑠 = 0.3

𝑀𝑠 = 0.4 2.4 4.5
𝑀𝑠 = 0.5 0.9 3.3 6.6

𝑀𝑠 = 0.6 1.6 3.9 2.6 8.0 14.1
𝑀𝑠 = 0.7 4.4 4.7 9.9 9.8 19.8 25.7
𝑀𝑠 = 0.8 6.4 5.5 14.5 11.7 23.6 46.6

𝑀𝑠 = 0.9 7.6 6.6 15.4 13.6 27.3 54.3 54.4

𝑀𝑠 = 1.0 7.9 7.4 15.9 15.3 31.6 30.2 64.0 56.5 63.9 55.8

𝑀𝑠 = 1.1 8.0 8.0 16.0 16.0 32.0 30.9 64.0 56.0 64.0 56.8

𝑀𝑠 = 1.2 8.0 8.0 16.0 16.0 32.0 30.4 64.0 55.2 64.0 57.2
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