
Learning to Persist or Switch
Efficient and Fair Allocations in Large-scale Multi-agent Systems

Panayiotis Danassis, Boi Faltings

École Polytechnique Fédérale de Lausanne (EPFL)

Artificial Intelligence Laboratory

Lausanne, Switzerland

{panayiotis.danassis,boi.faltings}@epfl.ch

ABSTRACT
We present a multi-agent learning algorithm, ALMA-Learning, for

efficient and fair allocations in large-scale systems. The proposed

approach circumvents the traditional pitfalls of multi-agent learn-

ing (e.g., the moving target problem, the curse of dimensionality,

or the need for mutually consistent actions) by relying on the

ALMA heuristic as a coordination mechanism for each stage game.

ALMA-Learning is decentralized and requires no communication

between the agents. The latter only observe their own history of

action/reward pairs.

Simulation results on a variety of scenarios demonstrate that

ALMA-Learning can quickly reach near optimal allocations (less

than 2.5% loss) in terms of social welfare, while providing higher

fairness (up to almost 10% lower inequality in certain scenarios

compared to the best performing baseline, i.e., the centralized,

maximum-weight matching solution). The lightweight nature and

the fast learning of the proposed approach constitute it ideal for

on-device deployment in real-world applications.

KEYWORDS
Multi-agent Learning; Coordination and Cooperation; Assignment

Problem;WeightedMatching; ResourceAllocation; On-device Learn-

ing

1 INTRODUCTION
One of the most relevant problems in multi-agent systems is finding

an optimal allocation between agents, i.e., computing a maximum-

weight matching in a weighted (bipartite or general) graph, were

edge weights correspond to the utility of each alternative. This

pertains to role allocation (e.g., team formation for autonomous

robots [Gunn and Anderson, 2013]), task assignment (e.g., agents

in a smart factory, or taxi-passenger matching [Varakantham et al.,

2012]), resource allocation (e.g., parking spaces / charging stations

for autonomous vehicles [Danassis and Faltings, 2019, Geng and

Cassandras, 2013]), etc. What follows is applicable to any such sce-
nario, but for concreteness we will refer to the allocation of a set of

resources to a set of agents in a bipartite graph, a setting known as

the assignment problem, one of the most fundamental combinatorial

optimization problems [Munkres, 1957].

When designing algorithms for the assignment problem, a signif-

icant challenge emerges from the nature of real-world applications,

which is often distributed and information-restrictive. Sharing plans,
utilities, or preferences creates high overhead, and, most impor-

tantly, there is often a lack of responsiveness and/or communication

between the participants [Stone et al., 2010]. Achieving fast conver-

gence and high efficiency in such information-restrictive settings

is extremely challenging.

We recently proposed a heuristic (ALMA – ALtruistic MAtching

– Heuristic [Danassis et al., 2019a]) that addresses the aforemen-

tioned challenges. ALMA is decentralized, completely uncoupled

(agents are only aware of their own history of action/reward pairs),

and requires no communication between the agents. A distinctive

characteristic of ALMA is that agents make decisions locally, based

on the contest for resources that they are interested in, and the

agents that are interested in the same resources. If each agent is

interested in only a subset of the total resources, ALMA converges

in time polynomial in the maximum size of the subsets; not the

total number of resources. Crucially, in the realistic case where the

aforementioned quantities are bounded independently of the total

number of agents/resources, the convergence time remains constant
as the total problem size increases. The latter is true by default in

many real-world applications (e.g., resource allocation in urban

environments), since agents only have a local (partial) knowledge

of the world, and there is typically a cost associated with acquiring

a resource (e.g., a taxi driver would not be willing to drive to the

other end of the city to pick up a passenger). Thus, ALMA utilizes

a natural characteristic of the application domain, where other al-

gorithms (e.g., the optimal centralized solution) would require time

polynomial in the total number of agents/resources due to interde-

pendencies. This lightweight nature of ALMA coupled with the lack
of inter-agent communication, and the highly efficient allocations,
make it ideal for an on-device solution for large-scale intelligent

systems (e.g., IoT devices, smart cities and intelligent infrastructure,

industry 4.0, autonomous vehicles, etc.). As an example application,

we demonstrated in [Danassis et al., 2019b] that ALMA offers an ef-

ficient, end-to-end solution for the Dynamic Ridesharing and Fleet

Relocation problem (as compared to 12 different algorithms over

12 metrics).

Despite ALMA’s high performance in a variety of domains, it re-

mains a heuristic; i.e., sub-optimal by nature. In this work, we build

on the ideas of ALMA, and introduce a learning element (ALMA-

Learning) that allows to quickly close the gap in social welfare

compared to the optimal solution, while simultaneously increasing

the fairness of the allocation. Specifically, in ALMA, while contest-

ing for a resource, each agent will back-off with probability that

depends on their own utility loss of switching to some alternative.

ALMA-Learning improves upon ALMA by allowing agents to learn

the expected loss of utility they will incur by backing-off, and the

expected reward, which helps guide their search.

ALMA-Learning is applicable in repeated allocation games (e.g.,

self organization of intelligent infrastructure, autonomous mobility

systems, etc.). As an example application, the Swiss Federal Rail-

ways recently launched a challenge to enable trains to automatically

coordinate their route selection using multi-agent technologies (see

https://www.aicrowd.com/challenges/flatland-challenge). Treating

alternative routes as resources, with utility proportional to the de-

lay compared to the shortest route, we can apply ALMA-Learning

to quickly find an efficient and fair allocation, while easily being

able to handle the scale of such domain
1
. Finally, ALMA-Learning

can be also applied as a negotiation protocol in one-shot interac-

tions, where agents can simulate the learning process offline, before

making their final decision.

1.1 Our Contributions
Our main contributions in this paper are:

(1) We introduce a novel multi-agent (meta-)learning algorithm

(ALMA-Learning), build on top of the ALMA heuristic of [Danas-

sis et al., 2019a], for maximum-weight matching in both bipar-

tite and general graphs. ALMA-Learning is decentralized, com-

pletely uncoupled (agents are only aware of their own history of

action/reward pairs), and requires no communication between the

agents. Coupled with its lightweight, and scalable nature, the above
constitute ALMA-Learning ideal for on-device deployment in real-

world applications.

(2)We prove that ALMA-Learning converges, and provide a thor-

ough empirical evaluation in a variety of scenarios. In all of them

ALMA-Learning is able to quickly reach allocations of high social

welfare (less than 2.5% loss) and fairness (up to almost 10% lower

inequality in certain scenarios compared to the best performing

baseline, i.e., the centralized, maximum-weight matching solution).

1.2 Discussion and Related Work
Finding a maximum weight matching in a weighted bipartite graph

is one of the best-studied combinatorial optimization problems in

the literature. The first polynomial time algorithm (with respect to

the total number of nodes, edges) was introduced by Jacobi in the

19th century [Borchardt and Jacobi, 1865, Ollivier, 2009], and was

succeeded by many classical algorithms [Bertsekas, 1979, Edmonds

and Karp, 1972, Munkres, 1957] with the Hungarian algorithm of

Kuhn [1955] being the most prominent one (see [Su, 2015] for an

overview). The problem can also be solved via linear programming

[Dantzig, 1990], as its LP formulation relaxation admits integral

optimal solutions [Papadimitriou and Steiglitz, 1982]. The more

general maximum weight matching problem on general graphs has

also been extensively studied (see [Lovász and Plummer, 2009]),

with the most prominent algorithm being the blossom algorithm of

[Edmonds, 1965].

In reality, a centralized coordinator is not always available, and if

so, it has to know the utilities of all the participants, which is often

not feasible. In the literature of the assignment problem, there also

1
Today, there are more than 10,000 trains running each day in Switzerland, while due

to the growing demand for mobility, the Swiss Federal Railways needs to increase

the transportation capacity of the network by approximately 30% in the future (see

https://www.aicrowd.com/challenges/flatland-challenge).

exist several decentralized algorithms (e.g., [Bürger et al., 2012, Gior-

dani et al., 2010, Ismail and Sun, 2017, Zavlanos et al., 2008] which

are the decentralized versions of the aforementioned well-known

centralized algorithms – see also [Elkin, 2004, Kuhn et al., 2016]

for general results in distributed approximability under only local

information/computation). These algorithms require polynomial

computational time and polynomial number of messages (such as

cost matrices [Ismail and Sun, 2017], pricing information [Zavlanos

et al., 2008], or a basis of the LP [Bürger et al., 2012], etc.).

While the problem has been ‘solved’ from an algorithmic per-

spective – having both centralized and decentralized polynomial

algorithms – it is not so from the perspective of multi-agent sys-

tems, for two key reasons: (1) complexity, and (2) communication.

The proliferation of intelligent systems will give rise to large-scale,
multi-agent based technologies. Algorithms for maximum-weight

matching, whether centralized or distributed, have runtime that

increases with the total problem size, even if agents are interested

in a small number of resources. Thus, they can only handle prob-

lems of some bounded size. Moreover, they require a significant

amount of inter-agent communication. As the number and diver-

sity of autonomous agents continue to rise, differences in origin,

communication protocols, or the existence of sub-optimal, legacy

agents will bring forth the need to collaborate without any form

of explicit communication [Stone et al., 2010]. Most importantly

though, communication between participants (sharing utility tables,

plans, and preferences) creates high overhead. ALMA on the other

hand achieves constant in the total problem size running time – un-

der reasonable assumptions on the preference domain of the agents

– while being, to the best of our knowledge, the only decentralized

algorithm that requires no message exchange (i.e., no communi-

cation network) between the participating agents [Danassis et al.,

2019a]. The proposed approach, ALMA-Learning, maintains the

aforementioned two properties of ALMA.

From the perspective of Multi-Agent Learning (MAL), the prob-

lem at hand falls under the paradigm of multi-agent reinforcement

learning, where for example it can be modeled as a Multi-Armed

Bandit (MAB) problem [Auer et al., 2002], or as a Markov Deci-

sion Process (MDP) and solved using Q-Learning [Busoniu et al.,

2008]. In MAB problems an agent is given a number of arms (re-

sources) and at each time-step has to decide which arm to pull

to get the maximum expected reward. In Q-learning agents solve

Bellman’s optimality equation [Bellman, 2013] using an iterative

approximation procedure so as to maximize some notion of ex-

pected cumulative reward. Both approaches have arguably been

designed to operate in a more challenging setting, thus making

them susceptible to many pitfalls inherent in MAL. For example,

there is no stationary distribution, in fact, rewards depend on the

joint action of the agents and since all agents learn simultaneously,

this results to a moving-target problem. Thus, there is an inherent

need for coordination in MAL algorithms, stemming from the fact

that the effect of an agent’s action depends on the actions of the

other agents, i.e. actions must be mutually consistent to achieve

the desired result. Moreover, the curse of dimensionality makes it

difficult to apply such algorithms to large scale problems. ALMA-

Learning solves both of the above challenges by relying on ALMA
as a coordination mechanism for each stage of the repeated game. An-
other fundamental difference is that the aforementioned algorithms

2

https://www.aicrowd.com/challenges/flatland-challenge
https://www.aicrowd.com/challenges/flatland-challenge

are designed to tackle the exploration/exploitation dilemma. A ban-

dit algorithm for example will constantly explore, even if an agent

has acquired his most preferred alternative. In matching problems,

though, agents know (or have an estimate of) their own utilities.

ALMA-Learning in particular, requires the knowledge of personal

preference ordering and pairwise differences of utility (which are

far easier to estimate than the exact utility table). The latter gives a

great advantage to ALMA-Learning, since agents do not need to

continue exploring after successfully claiming a resource, which

stabilizes the learning process.

2 PROPOSED APPROACH: ALMA-LEARNING
In this section, we define ALMA-Learning and prove its conver-

gence properties. We start by defining the assignment problem.

2.1 The Assignment Problem
The assignment problem consists of finding a maximum weight

matching in a weighted bipartite graph, G = {N ∪ R, E}. In the

studied scenario, N = {1, . . . ,N } agents compete to acquire R =

{1, . . . ,R} resources. The weight of an edge (n, r) ∈ E represents

the utility (un (r) ∈ [0, 1]) agent n receives by acquiring resource r .
Each agent can acquire at most one resource, and each resource can

be assigned to at most one agent. The goal is to maximize the social

welfare (sum of utilities), i.e., maxx≥0
∑
(n,r)∈E un (r)xn,r , where

x = (x1,1, . . . , xN ,R), subject to
∑
r |(n,r)∈E xn,r = 1,∀n ∈ N , and∑

n |(n,r)∈E xn,r = 1,∀r ∈ R.

2.2 Learning Rule
We begin by describing (a slightly modified version of) the ALMA

heuristic of [Danassis et al., 2019a], which is used as a subroutine by

ALMA-Learning. The pseudo-codes for ALMA and ALMA-Learning

are presented in Algorithms 1 and 2, respectively. To improve read-

ability, we have omitted the subscript n from all the variables and

arrays in Algorithms 1 and 2. Both ALMA and ALMA-Learning are

run independently and in parallel by all the agents.

We make the following two assumptions: First, we assume (possi-

bly noisy) knowledge of personal utilities by each agent. Second, we

assume that agents can observe feedback from their environment.

This is used to inform collisions and detect free resources. It could

be achieved by the use of visual, auditory, olfactory sensors etc., or

by any other means of feedback from the resource (e.g., by sending

an occupancy message). Note here that these messages would be

between the requesting agent and the resource, not between the

participating agents themselves, and that it suffices to send only 1

bit of information (e.g., 0, 1 for occupied / free respectively).

For both ALMA, and ALMA-Learning, each agent sorts his avail-

able resources (possibly Rn ⊆ R) in decreasing utility (r0, r1, . . . ,
ri , ri+1, . . . , rRn−1) under his preference ordering ≺n .

2.2.1 ALMA: ALtruistic MAtching Heuristic. ALMA con-

verges to a resource through repeated trials as follows. The set

of available actions is denoted as A = {Y ,Ar1 , . . . ,ArRn }, where
Y refers to yielding, and Ar refers to accessing resource r . Each
agent has a strategy,д, that points to a resource. As long as an agent

has not acquired a resource yet, at every time-step, there are two

possible scenarios. If д = Ar (strategy points to resource r), then
agent n attempts to acquire that resource. If there is a collision,

Algorithm 1 ALMA: Altruistic Matching Heuristic.

Require: Sort resources (Rn ⊆ R) in decreasing order of utility

r0, r1, . . . , ri , ri+1, . . . , rRn−1 under ≺n
1: procedure ALMA(rstar t , loss[R])
2: Initialize д← Arstar t
3: Initialize current ← −1
4: Initialize converдed ← False
5: while !converдed do
6: if д = Ar then
7: Agent n attempts to acquire r
8: if Collision(r) then
9: Back-off (set д← Y) with probability P(loss[r])
10: else
11: converдed ← True

12: else (д = Y)
13: current ← (current + 1) mod R
14: Agent n monitors r ← rcurrent .
15: if Free(r) then set д← Ar

16: return r , such that д = Ar

the colliding parties back-off with some probability. Otherwise, if

д = Y , the agent choses a resource r for monitoring. If the resource

is free, he sets д ← Ar . Algorithm 1 presents the pseudo-code of

ALMA, which is followed by every agent individually.

The back-off probability (P(·)) is computed individually and lo-

cally based on each agent’s expected loss. If more than one agent

compete for resource ri (step 8 of Algorithm 1), each of them will

back-off with probability that depends on their expected utility

loss. The expected loss array is computed by ALMA-Learning

and provided as input to ALMA. The actual back-off probabil-

ity can be computed with any monotonically decreasing function

on loss (see [Danassis et al., 2019a]). In this work we have used

P(loss) = f (loss)β , where β controls the aggressiveness (willing-

ness to back-off), and f (·) is given by:

f (loss) =

1 − ϵ, if loss ≤ ϵ

ϵ, if 1 − loss ≤ ϵ

1 − loss, otherwise

(1)

Using the aforedescribed rule, agents that do not have good

alternatives will be less likely to back-off and vice versa. The ones

that do back-off select an alternative resource and examine its

availability. The resource selection is performed in sequential order,

always starting from the most preferred resource (see step 3 of

Algorithm 1).

2.2.2 Motivating Examples: Sources of Inefficiency. De-
spite ALMA’s high performance in a variety of domains (as demon-

strated in both [Danassis et al., 2019a] and [Danassis et al., 2019b]),

it remains a heuristic; i.e., sub-optimal by nature. In this section we

provide some adversarial examples; sources of inefficiency in terms

of achieved social welfare, which motivated ALMA-Learning.

In the original ALMA algorithm, all agents start at their most

preferred resource, and back-off with probability that depends on

3

Resources

Agents

r1 r2 r3
n1 1 0 0.5

n2 0 1 0

n3 1 0.9 0

Table 1: Motivating adversarial example: Inaccurate loss es-
timate. Agent n3 backs-off with high probability when con-
testing for resource r1 assuming a good alternative, only to
find resource r2 occupied.

Resources

Agents

r1 r2 r3
n1 1 0.9 0

n2 0 1 0.9

n3 1 0.9 0

Table 2: Motivating adversarial example: Inaccurate reward
expectation. Agents n1 and n3 always start by attempting to
acquire resource r1, reasoning that it is the most preferred
one, yet each of them only wins r1 half of the times.

their loss of switching to the immediate next best resource. Specifi-

cally, in the simplest case, the probability to back-off when contest-

ing resource ri would be given by P(loss(i)) = 1 − loss(i), where
loss(i) = un (ri) −un (ri+1) and ri+1 is the next best resource accord-
ing to agent n’s preferences ≺n .

The first example is given in Table 1. Agentn3 backs-offwith high

probability (higher than agent n1) when contesting for resource

r1 assuming a good alternative, only to find resource r2 occupied.
Thus, n3 ends up matched with resource r3. The social welfare

of the final allocation is 2, which is 20% worse than the optimal

(which is for agents n1,n2,n3 to be matched with resources r3, r2, r1,
respectively, achieving a social welfare of 2.5). ALMA-Learning

solves this problem by learning an empirical estimate of the loss an

agent will incur if he backs-off from a resource. In this case, agent

n3 will learn that his loss is not 1− 0.9 = 0.1, but actually 1− 0 = 1,

and thus will not back-off, resulting in an optimal allocation.

Table 2 presents the second example. Agents n1 and n3 always
start by attempting to acquire resource r1, reasoning that it is the
most preferred one. Yet, in a repeated game, each of them only

wins r1 half of the times (achieving social welfare 2, 28.5% worse

than the optimal 2.8), thus, in expectation, resource r1 has utility
0.5. ALMA-Learning solves this problem by learning an empirical

estimate of the reward of each resource. In this case, after learning,

either agent n1 or n3 (or both), will start from resource r2. Agent
n2 will back-off since he has a good alternative, and the result will

be the optimal allocation where agents n1,n2,n3 are matched with

resources r2, r3, r1 (or r1, r3, r2), respectively.

2.2.3 ALMA-Learning: AMulti-Agent (Meta-)LearningAl-
gorithm. ALMA-Learning uses ALMA as a sub-routine, specifi-

cally as a coordination mechanism for each stage of the repeated

game. Over time, ALMA-Learning learns which resource to select

first (rstar t) when running ALMA, and an accurate empirical es-

timate on the loss it will incur by backing-off (loss[]). By learning

these two values, agents take more informed decisions, specifically:

Algorithm 2 ALMA-Learning

Require: Sort resources (Rn ⊆ R) in decreasing order of utility

r0, r1, . . . , ri , ri+1, . . . , rRn−1 under ≺n
Require: rewardHistory[R][L], reward[R], loss[R]
1: procedure ALMA-Learning

2: for all r ∈ R do ◃ Initialization

3: rewardHistory[r].add(u(r))
4: reward[r] ← rewardHistory[r].getMean()

5: loss[r] ← u(r) − u(rnext)

6: rstar t ← arg maxr reward[r]
7:

8: for t ∈ [1, . . . ,T] do ◃ T : Time horizon

9: rwon ← ALMA(rstar t , loss[]) ◃ Run ALMA

10:

11: rewardHistory[rstar t].add(u(rwon))

12: reward[rstar t] ← rewardHistory[rstar t].getMean()

13: if u(rstar t) − u(rwon) > 0 then
14: loss[rstar t] ←
15: (1 − α)loss[rstar t] + α (u(rstar t) − u(rwon))

16:

17: if rstar t ! = rwon then
18: rstar t ← arg maxr reward[r]

(1) If an agent often loses the contest of his starting resource, the

expected reward of that resource will decrease, thus in the future

the agent will switch to an alternative starting resource, and (2) if

an agent backs-off from contesting resource r expecting low loss,

only to find that all his high utility alternatives are already occu-

pied, then his expected loss of resource r (loss[r]) will increase,
making him more reluctant to back-off in some future stage game.

In more detail, ALMA-Learning learns and maintains the following

information
2
:

(i) rewardHistory[R][L]: A 2D array. For each r ∈ R it maintains

the Lmost recent reward values received by agent n, i.e., the Lmost

recent un (rwon), where rwon ← ALMA(r , loss[]). See line 11 of

Algorithm 2. The array is initialized to the utility of each resource

(line 3 of Algorithm 2).

(ii) reward[R]: A 1D array. For each r ∈ R it maintains an

empirical estimate on the expected reward received by starting

at resource r and continue playing according to Algorithm 1. It

is computed by averaging the reward history of the resource, i.e.,

∀r ∈ R : reward[r] ← rewardHistory[r].дetMean(). See line 12 of
Algorithm 2.

(iii) loss[R]: A 1D array. For each r ∈ R it maintains an empirical

estimate on the loss in utility agent n incurs if he backs-off from

the contest of resource r . The loss of each resource r is initialized to
loss[r] ← un (r)−un (rnext), where rnext is the next most preferred

resource to r , according to agent n’s preferences ≺n (see line 5 of

Algorithm 2). Subsequently, for every stage game, agent n starts by

selecting resource rstar t , and ends up wining resource rwon . The

loss of rstar t is then updated according to the following averaging

2
We remind the reader that to improve readability we have omitted the subscript n
from all the variables and arrays, but every agent maintains their own estimates.

4

process:

loss[rstar t] ← (1 − α)loss[rstar t] + α (u(rstar t) − u(rwon))

where α is the learning rate.

Finally, the last condition in the pseudo-code (lines 17-18 of

Algorithm 2) prevent agents with good alternatives to continue

exploring. It ensures that an agent only attempts to switch his

starting resource if he failed to win said resource in the previous

stage game. Note that ties in the calculation of the argument of the

maxima (lines 18 and 6 of Algorithm 2) are broken randomly.

2.3 Convergence
In this section we will prove that ALMA-Learning converges. Con-

vergence of ALMA-Learning does not translate to a fixed allocation

at each stage game after convergence. The system has converged

when agents no longer switch their starting resource, rstar t . The
final allocation of each stage game is controlled by ALMA, which

means that even after convergence there can be contest for a re-

source, i.e., having more than one agent selecting the same starting

resource. As we will demonstrate later, this translates to fairer allo-

cations, since agents with similar preferences can alternate between

acquiring their most preferred resource.

Theorem 2.1. There exists time-step tconverдed such that ∀t >
tconverдed : rnstar t (t) = rnstar t (tconverдed), where r

n
star t (t) de-

notes the starting resource rstar t of agent n at the stage game of
time-step t .

Proof. Theorem 2.1 of [Danassis et al., 2019a] proves that ALMA

(called at line 9 of Algorithm 2) converges in polynomial time.

In fact, under the assumption that each agent is interested in

a subset of the total resources (i.e., Rn ⊂ R) and thus at each re-

source there is a bounded number of competing agents (Nr ⊂ N)

Corollary 2.1.1 of [Danassis et al., 2019a] proves that the expected

number of steps any individual agent requires to converge is inde-

pendent of the total problem size (i.e., N and R). In other words, by

bounding these two quantities (i.e., we consider Rn and N r
to be

constant functions of N , R), the convergence time of ALMA is con-
stant in the total problem sizeN , R. Thus, under the aforementioned

assumptions:

Each stage game converges in constant time.

Now that we have established that the call to the ALMA procedure

will return, the key observation to prove convergence for ALMA-

Learning is that agents switch their starting resource only when

the expected reward for the current starting resource drops below

the best alternative one, i.e., for an agent to switch from rstar t to
r ′star t , it has to be that reward[rstar t] < reward[r ′star t]. Given
that utilities are bounded in [0, 1], there is amaximum, finite number

of switches until rewardn [r] = 0,∀r ∈ R,∀n ∈ N . In that case, the

problem is equivalent to having N balls thrown randomly and

independently into N bins (since R = N). Since both R,N are finite,

the process will result in a distinct allocation in finite steps with

probability 1. In more detail, we can make the following arguments:

(i) Let rstar t be the starting resource for agent n, and r
′
star t ←

arg maxr ∈R/{rstar t } reward[r]. There are two possibilities. Either

reward[rstar t] > reward[r ′star t] for all time-steps t > tconverдed

– i.e., reward[rstar t] can oscillate but always stays larger than

reward[r ′star t] – or there exists time-step t when reward[rstar t] <
reward[r ′star t], and then agent n switches to the starting resource

r ′star t .
(ii) Only the reward of the starting resource rstar t changes at

each stage game. Thus, for the reward of a resource to increase, it has

to be the rstar t . In other words, at each stage game that we select

rstar t as the starting resource, the reward of every other resource

remains (1) unchanged and (2) reward[r] < reward[rstar t],∀r ∈
R {rstar t } (except when an agent switches starting resources).

(iii) There is a finite number of times each agent can switch his

starting resource rstar t . This is because un (r) ∈ [0, 1] and |un (r) −
un (r

′)| > δ ,∀n ∈ N, r ∈ R, where δ is a small, strictly positive

minimum increment value. This means that either the agents will

perform the maximum number of switches until rewardn [r] =
0,∀r ∈ R∀n ∈ N (which will happen in finite number of steps), or

the process will have converged before that.

(iv) If rewardn [r] = 0,∀r ∈ R,∀n ∈ N , the question of con-

vergence is equivalent to having N balls thrown randomly and

independently into R bins and asking whether you can have exactly

one ball in each bin – or in our case, where N = R, have no empty

bins. The probability of bin r being empty is

(
R−1
R

)N
, i.e., being oc-

cupied is 1−

(
R−1
R

)N
. The probability of all the bins to be occupied

is

(
1 −

(
R−1
R

)N)R
. The expected number of trials until this event

occurs is 1/

(
1 −

(
R−1
R

)N)R
, which is finite, for finite N ,R. �

3 EVALUATION
In this section we evaluate ALMA-Learning under various test

cases. We focus on (a) the relative difference, i.e., (achieved −
optimal)/optimal , in social welfare (SW) compared to the optimal

– in terms of achieved social welfare – allocation and (b) on fair-

ness. We run each configuration 16 times and report the average

values. Since we have randomized algorithms, we also run each

problem instance of each configuration 16 times. Error bars rep-

resent one standard deviation (SD) of uncertainty. In all of the

simulations, ALMA, and ALMA-Learning’s parameters were set to:

α = 0.1, β = 2, ϵ = 0.01, L = 20.

3.0.1 Employed Baselines. We compare ALMA-Learning to

three baselines:

(a) The Hungarian algorithm: The most prominent algorithm

for computing an maximum-weight matching in a bipartite graph

[Kuhn, 1955].

(b) The ALMA heuristic of [Danassis et al., 2019a].

(c) The Greedy algorithm: It goes through the agents randomly,

and assigns them their most preferred, unassigned resource. Greedy

approaches are appealing in real-life, large-scale systems, not only

due to their low complexity, but also because real-time constraints

dictate short planning windows which would potentially diminish

the benefit of batch optimization solutions compared to myopic

approaches [Widdows et al., 2017].

5

Resources

Agents

r1 r2 r3
n1 1 0.5 0

n2 0 1 0

n3 1 0.75 ϵ → 0

Table 3: Motivating adversarial example: Unfair allocation.
Both ALMA (with higher probability) and any optimal allo-
cation algorithmwill assign the coveted resource r1 to agent
n1, while n3 will receive utility 0.

3.0.2 Fairness Metrics. The usual predicament of efficient al-

locations is that they assign the resources only to a fixed subset of

agents, which leads to an unfair result. Consider the simple example

of Table 3. Both ALMA (with higher probability) and any optimal

allocation algorithm will assign the coveted resource r1 to agent n1,
while n3 will receive utility 0. But, using ALMA-Learning, agents n1
and n3 will update their expected loss for resource r1 to 1, and ran-

domly acquire it between stage games, increasing fairness. Recall

that convergence for ALMA-Learning does not translate to a fixed

allocation at each stage game after convergence. To capture the

fairness of this ‘mixed’ allocation, we report the average fairness

on 32 evaluation time-steps that follow the training period.

Given the broad literature on fairness, we opted to measure two

different fairness indices:

(a) The Jain index [Jain et al., 1998]: Widely used in network

engineering to determine whether users or applications receive a

fair share of system resources. It exhibits a lot of desirable properties

such as: population size independence, continuity, scale and metric

independence, and boundedness. For an allocation of N agents,

such that the nth agent is alloted xn , the Jain index is given by

Equation 2. An allocation x = (x1, . . . , xN)⊤ is considered fair, iff

J(x) = 1.

J(x) =

(
N∑
n=1

xn

)
2

N
N∑
n=1

x2n

(2)

(b) The Gini coefficient [Gini, 1912]: One of the most commonly

used measures of inequality by economists intended to represent

the wealth distribution of a population of a nation. For an alloca-

tion game of N agents, such that the nth agent is alloted xn , the
Gini coefficient is given by Equation 3. A Gini coefficient of zero

expresses perfect equality, i.e., an allocation is fair iffG(x) = 0.

G(x) =

N∑
n=1

N∑
n′=1
|xn − xn′ |

2N
N∑
n=1

xn

(3)

3.0.3 Evaluation Scenarios. Weevaluate ALMA-Learning un-

der three test-cases:

(a) Map: Consider a Cartesian map on which the agents and

resources are randomly distributed. The utility received by agent n

for acquiring resource r is proportional to the inverse of their dis-

tance, i.e., un (r) = 1/dn,r . Let dn,r denote the Manhattan distance.

We assume a grid length of size

√
4 × N .

(b) Noisy Common Utilities: This pertains to an anti-coordination

scenario, i.e., competition between agents with similar preferences.

Wemodel the utilities as:∀n,n′ ∈ N, |un (r)−un′(r)| ≤ noise, where

the noise is sampled from a zero-mean Gaussian distribution, i.e.,

noise ∼ N(0,σ 2).

(c) Binary Utilities: This corresponds to each agent being indiffer-
ent to acquiring any resource amongst his set of desired resources.

For each agentn and for each resource r ,un (r) is randomly assigned

to 0 or 1.

3.1 Results: Social Welfare
We begin with the loss in social welfare compared to the optimal

solution. Figures 1a, 2a, and 3a present the results for the three

test-cases (the Hungarian algorithm computes the optimal solution,

thus is omitted from the graphs).

ALMA-Learning loses 0.00% to 0.89% in the test-case (a) Map

after 512 training time-steps (0.00% to 1.68% after only 64 training

time-steps), 1.34% to 2.26% in the test-case (b) Noisy Common

Utilities, σ = 0.1, and finally 0.00% to 0.39% in the test-case (c)

Binary Utilities after 64 training time-steps. ALMA loses 0.00% to

9.57%, 2.96% to 10.58%, and 0.00% to 16.88% in the three test-cases,

respectively. Finally, Greedy loses 1.51% to 18.71%, 8.13% to 12.86%,

and 0.10% to 14.70%.

We also run test-case (b) Noisy Common Utilities for σ = 0.2 and

σ = 0.4, but for better visualization we excluded the results from

Figure 2a, opting instead to plot the worst performing scenario for

ALMA-Learning (σ = 0.1). ALMA-Learning loses 0.35% to 1.97% for

σ = 0.2, and 0.05% to 2.26% for σ = 0.4. As a reference, ALMA loses

1.37% to 12.33%, and 0.75% to 10.74%, while Greedy loses 5.40% to

14.11%, and 0.79% to 12.64% for σ = 0.2, and σ = 0.4, respectively.

In all of the test-cases, ALMA-Leaning is able to quickly reach

near-optimal allocations. On par with previous results [Danassis

et al., 2019a,b], ALMA loses around 10% to 15%
3
. Is is worth noting

that test-cases that are ‘harder’ for ALMA – specifically test-case

(a) Map, where ALMA maintains the same gap on the optimal

solution as the number of resources grow, and test-case (c) Binary

Utilities, where ALMA exhibits the highest loss for 16 resources
4

– are ‘easier’ to learn for ALMA-Learning. In the aforementioned

two test cases, ALMA-Learning was able to learn near-optimal to

optimal allocations in just 64 − 512 training time-steps (in fact

in certain cases it learns near-optimal allocations in as little as

32 time-steps). Contrary to that, in test-case (b) Noisy Common

Utilities, ALMA-Learning requires significantly more time to learn

(we trained for 8192 time-steps), especially for larger games (R >
256). Intuitively we believe that this is because ALMA already starts

with a near optimal allocation, and given the high similarity on

the agent’s utility tables (especially for σ = 0.1), it requires a lot of

fine-tunning to improve the result.

3
Note that both ALMA and ALMA-Learning use the same function P (loss) =
f (loss)β (see Equation 1) to compute the back-off probability, in order to provide a

fair common ground for the evaluation.

4
Binary utilities represent a somewhat adversarial test-case for ALMA, since the agents

can not utilize the more sophisticated back-off mechanism based on the loss (loss is

either 1, or 0 in this case).

6

2 4 8 16 32 64 128 256 512 1024

#Resources

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 s
o

c
ia

l
W

e
lf
a

re
 (

%
)

(a
c
h

ie
v
e

d
 -

 o
p

ti
m

a
l
/

o
p

ti
m

a
l)

Greedy

ALMA

ALMA-Learning

(a) Relative Difference in Social Welfare (%)

4 8 16 32 64 128 256 512 1024

#Resources

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

J
a
in

 i
n
d
e
x

Greedy

ALMA

ALMA-Learning

Hungarian

(b) Jain Index (higher is better)

4 8 16 32 64 128 256 512 1024

#Resources

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

G
in

i
c
o

e
ff

ic
ie

n
t

Greedy

ALMA

ALMA-Learning

Hungarian

(c) Gini Coefficient (lower is better)

Figure 1: Test-case (a): Map, we report the relative difference in social welfare, the Jain index, and the Gini coefficient, for
increasing number of resources ([2, 1024], x-axis in log scale), andN = R. For each problem instance, we trainedALMA-Learning
for 512 time-steps.

2 4 8 16 32 64 128 256 512 1024

#Resources

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 s
o

c
ia

l
W

e
lf
a

re
 (

%
)

(a
c
h

ie
v
e

d
 -

 o
p

ti
m

a
l
/

o
p

ti
m

a
l)

Greedy

ALMA

ALMA-Learning

(a) Relative Difference in Social Welfare (%)

2 4 8 16 32 64 128 256 512 1024

#Resources

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

J
a
in

 i
n
d
e
x

Greedy

ALMA

ALMA-Learning

Hungarian

(b) Jain Index (higher is better)

2 4 8 16 32 64 128 256 512 1024

#Resources

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

G
in

i
c
o

e
ff

ic
ie

n
t

Greedy

ALMA

ALMA-Learning

Hungarian

(c) Gini Coefficient (lower is better)

Figure 2: Test-case (b): Noisy Common Utilities, σ = 0.1, we report the relative difference in social welfare, the Jain index, and
the Gini coefficient, for increasing number of resources ([2, 1024], x-axis in log scale), and N = R. For each problem instance,
we trained ALMA-Learning for 8192 time-steps.

2 4 8 16 32 64 128 256 512 1024

#Resources

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 i
n

 s
o

c
ia

l
W

e
lf
a

re
 (

%
)

(a
c
h

ie
v
e

d
 -

 o
p

ti
m

a
l
/

o
p

ti
m

a
l)

Greedy

ALMA

ALMA-Learning

(a) Relative Difference in Social Welfare (%)

4 8 16 32 64 128 256 512 1024

#Resources

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

J
a
in

 i
n
d
e
x

Greedy

ALMA

ALMA-Learning

Hungarian

(b) Jain Index (higher is better)

4 8 16 32 64 128 256 512 1024

#Resources

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

G
in

i
c
o

e
ff

ic
ie

n
t

Greedy

ALMA

ALMA-Learning

Hungarian

(c) Gini Coefficient (lower is better)

Figure 3: Test-case (c): BinaryUtilities, we report the relative difference in socialwelfare, the Jain index, and theGini coefficient,
for increasing number of resources ([2, 1024], x-axis in log scale), and N = R. For each problem instance, we trained ALMA-
Learning for 64 time-steps.

3.2 Results: Fairness
Next, we evaluate the fairness of the final allocation. Figures 1b, 2b,

and 3b depict the Jain index (higher is better) for the three test-cases,

while the Gini coefficient (lower is better) is presented in Figures

1c, 2c, and 3c.

In all of the test-cases and for both indices, ALMA-Leaning

achieves the most fair allocations, fairer than the optimal (in terms

of social welfare) solution. In particular, ALMA-Learning’s Jain

index is between 0.86 to 0.89 (11.95%, 22.44%, and 5.03% higher

on average than ALMA, Greedy, and Hungarian, respectively) in

the test-case (a) Map, 0.85 to 0.93 (5.58%, 7.58%, and 1.81% higher

on average than ALMA, Greedy, and Hungarian, respectively) in

7

the test-case (b) Noisy Common Utilities, σ = 0.1, and finally 0.88

to 1.00 (10.18%, 5.36%, and 0.58% higher on average than ALMA,

Greedy, and Hungarian, respectively) in the test-case (c) Binary

Utilities. ALMA’s Jain index is between 0.75 to 0.80, 0.79 to 0.89,

and 0.82 to 0.98, Greedy’s Jain index is between 0.70 to 0.73, 0.77 to

0.88, and 0.72 to 1.00, and finally, Hungarian’s Jain index is between

0.79 to 0.86, 0.81 to 0.92, and 0.84 to 1.00 in the three test-cases,

respectively.

Moving on to the Gini coefficient, ALMA-Learning achieves be-

tween 0.17 to 0.20 (−29.04%, −42.91%, and −9.63% lower on average

than ALMA, Greedy, and Hungarian, respectively) in the test-case

(a) Map, 0.16 to 0.23 (−18.29%, −23.66%, and −6.52% lower on av-

erage than ALMA, Greedy, and Hungarian, respectively) in the

test-case (b) Noisy Common Utilities, σ = 0.1, and finally 0.00 to

0.13 (−90.43%, −92.61%, and −0.18% lower on average than ALMA,

Greedy, and Hungarian, respectively) in the test-case (c) Binary

Utilities. ALMA’s Gini coefficient is between 0.25 to 0.28, 0.19 to

0.28, and 0.02 to 0.18, Greedy’s Gini coefficient is between 0.30 to

0.34, 0.21 to 0.29, and 0.00 to 0.28, and finally, Hungarian’s Gini

coefficient is between 0.19 to 0.23, 0.17 to 0.24, and 0.00 to 0.16 in

the three test-cases, respectively.

4 CONCLUSION
The next technological revolution will be interwoven to the prolifer-

ation of intelligent systems. To truly allow for scalable solutions, we

need to shift from traditional approaches to multi-agent solutions,

ideally run on-device. In this paper, we present a novel learning

algorithm (ALMA-Learning), which exhibits such properties, to

tackle a central challenge in multi-agent systems: finding an opti-

mal allocation between agents, i.e., computing a maximum-weight

matching. We prove that ALMA-Learning converges, and provide

a thorough empirical evaluation in a variety of scenarios. In all of

them ALMA-Learning is able to quickly (in as little as 64 training

time-steps) reach allocations of high social welfare (less than 2.5%

loss) and fairness.

REFERENCES
Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The

nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1 (2002),

48–77.

Richard Bellman. 2013. Dynamic programming. Courier Corporation.
Dimitri P. Bertsekas. 1979. A distributed algorithm for the assignment problem. Lab.

for Information and Decision Systems Working Paper, MIT (1979).

Carl W. Borchardt and Carl G.J. Jacobi. 1865. De investigando ordine systematis

aequationum differentialium vulgarium cujuscunque. Journal für die reine und
angewandte Mathematik 64 (1865), 297–320.

Mathias Bürger, Giuseppe Notarstefano, Francesco Bullo, and Frank Allgöwer. 2012.

A distributed simplex algorithm for degenerate linear programs and multi-agent

assignments. Automatica (2012).
L. Busoniu, R. Babuska, and B. De Schutter. 2008. A Comprehensive Survey of Multi-

agent Reinforcement Learning. Trans. Sys. Man Cyber Part C 38, 2 (March 2008),

156–172. https://doi.org/10.1109/TSMCC.2007.913919

Panayiotis Danassis and Boi Faltings. 2019. Courtesy as a Means to Coordinate.

In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS ’19). 9.

Panayiotis Danassis, Aris Filos-Ratsikas, and Boi Faltings. 2019a. Anytime Heuristic

for Weighted Matching Through Altruism-Inspired Behavior. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
215–222. https://doi.org/10.24963/ijcai.2019/31

Panayiotis Danassis, Marija Sakota, Aris Filos-Ratsikas, and Boi Faltings. 2019b. Putting

Ridesharing to the Test: Efficient and Scalable Solutions and the Power of Dynamic

Vehicle Relocation. ArXiv: 1912.08066 (2019).
George B. Dantzig. 1990. Origins of the simplex method. ACM.

Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices. Journal
of research of the National Bureau of Standards B (1965).

Jack Edmonds and Richard M. Karp. 1972. Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems. J. ACM (1972). https://doi.org/10.1145/

321694.321699

Michael Elkin. 2004. Distributed Approximation: A Survey. SIGACT News 35, 4 (Dec.
2004), 40–57. https://doi.org/10.1145/1054916.1054931

Yanfeng Geng and Christos G. Cassandras. 2013. New “smart parking” system based on

resource allocation and reservations. IEEE Transactions on Intelligent Transportation
Systems (2013).

Corrado Gini. 1912. Variabilità e mutabilità. Reprinted in Memorie di metodologica
statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi (1912).

Stefano Giordani, Marin Lujak, and Francesco Martinelli. 2010. A distributed algorithm

for the multi-robot task allocation problem. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems. Springer.

Tyler Gunn and John Anderson. 2013. Dynamic Heterogeneous Team Formation for

Robotic Urban Search and Rescue. Procedia Computer Science (2013). The 4th Int.

Conf. on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd Int.

Conf. on Sustainable Energy Information Technology (SEIT-2013).

Sarah Ismail and Liang Sun. 2017. Decentralized hungarian-based approach for fast and

scalable task allocation. In 2017 Int. Conf. on Unmanned Aircraft Systems (ICUAS).
Raj Jain, Dah-Ming Chiu, and W. Hawe. 1998. A Quantitative Measure Of Fairness

And Discrimination For Resource Allocation In Shared Computer Systems. CoRR
cs.NI/9809099 (1998). http://arxiv.org/abs/cs.NI/9809099

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local Computation:

Lower and Upper Bounds. J. ACM 63, 2, Article 17 (March 2016), 44 pages. https:

//doi.org/10.1145/2742012

Harold W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics (1955).

László Lovász and Michael D. Plummer. 2009. Matching theory. Vol. 367. American

Mathematical Soc.

James Munkres. 1957. Algorithms for the assignment and transportation problems.

Journal of the society for industrial and applied mathematics (1957).
François Ollivier. 2009. Looking for the order of a system of arbitrary ordinary differ-

ential equations. Applicable Algebra in Engineering, Communication and Computing
(2009).

Christos H. Papadimitriou and Kenneth Steiglitz. 1982. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. 2010. Ad Hoc

Autonomous Agent Teams: Collaboration without Pre-Coordination. In AAAI.
Hsin-Hao Su. 2015. Algorithms for Fundamental Problems in Computer Networks.

(2015).

Pradeep Varakantham, Shih-Fen Cheng, Geoff Gordon, and Asrar Ahmed. 2012. De-

cision support for agent populations in uncertain and congested environments.

(2012).

Dominic Widdows, Jacob Lucas, Muchen Tang, and Weilun Wu. 2017. GrabShare:

The construction of a realtime ridesharing service. In 2017 2nd IEEE International
Conference on Intelligent Transportation Engineering (ICITE).

Michael M. Zavlanos, Leonid Spesivtsev, and George J Pappas. 2008. A distributed

auction algorithm for the assignment problem. In Decision and Control, 2008. IEEE.

8

https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.24963/ijcai.2019/31
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/1054916.1054931
http://arxiv.org/abs/cs.NI/9809099
https://doi.org/10.1145/2742012
https://doi.org/10.1145/2742012

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion and Related Work

	2 Proposed Approach: ALMA-Learning
	2.1 The Assignment Problem
	2.2 Learning Rule
	2.3 Convergence

	3 Evaluation
	3.1 Results: Social Welfare
	3.2 Results: Fairness

	4 Conclusion
	References

