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ABSTRACT
We investigate the problem of multi-agent coordination under ra-

tionality constraints. Specifically, role allocation, task assignment,

resource allocation, etc. Inspired by human behavior, we propose a

framework (CA
3
NONY) that enables fast convergence to efficient

and fair allocations based on a simple convention of courtesy. We

prove that following such convention induces a strategy which

constitutes an ϵ-subgame-perfect equilibrium of the repeated al-

location game with discounting. Simulation results highlight the

effectiveness of CA
3
NONY as compared to state-of-the-art bandit

algorithms, since it achieves more than two orders of magnitude

faster convergence, higher efficiency, fairness, and average payoff.
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1 INTRODUCTION
In multi-agent systems (MAS), agents are often called upon to im-

plement a joint plan in order to maximize their rewards. Typically,

coordination in a joint plan incorporates (possibly a combination

of) two distinct elements: agents may be required to take the same

action [14, 31], or agents may be required to take distinct actions

[13, 19]. The latter is ubiquitous in everyday life, e.g. managing

common-pool resources, or deciding on car/ship/airplane routes in

traffic management. This paper studies coordination in repeated

allocation games. Consider for example the problem of channel

allocation in wireless networks [36]. In such a problem, N wireless

devices contend for R transmission slots (i.e. particular frequency

band in a certain period of time), where N ≫ R. If more than one

agent access a slot simultaneously, a collision occurs and the col-

liding parties incur a cost ζ < 0. The goal then for the agents is to

transmit on different slots to minimize collisions over time. Other

scenarios include role allocation (e.g. teammates during a game),

task assignment (e.g. employees of a factory), resource allocation

(e.g. parking spaces and/or charging stations for autonomous ve-

hicles), etc. What follows is applicable to any such scenario. For
simplicity hereafter we will refer only to indivisible resources (i.e.
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resources which can not be shared). Beyond the scope of repeated

games, the proposed framework can also be applied as a negoti-

ation protocol in one-shot interactions. E.g. self-driving vehicles

attempting to get a parking space can utilize such a protocol in

a simulated environment with message exchange. Conforming to

the relevant literature, in what follows we refer to the coordina-

tion problem of selecting distinct actions as the anti-coordination

problem [9, 13, 16, 19, 23].

The most straightforward solution would be to have a central

coordinator with complete information recommend an action to

each agent. This, though, would require the agents to communicate

their preferences/plans, which creates high overhead and raises

incentive compatibility and truthfulness issues. Moreover, in real-

world applications with partial observability, agents might not be

willing to trust such recommendations. On the other hand, agents

can learn to anti-coordinate their actions in a completely decentral-

ized manner. However, in a fully decentralized scheme, agents have

an incentive to ’bully’ others (stick to your action until you drive

out the competition) [25], which makes it impossible to converge

to solutions that are both efficient and fair. As such, a mechanism is

needed that employs some sort of external authority. In this paper,

we employ simple monitoring authorities (MA), with the primary

goal to keep track of successful accesses. We do not require any

planning capabilities by the MAs, nor any knowledge of the plans

and preferences of the participants; only the ability to monitor

successful accesses on their respective resource. Such MAs already

exist naturally in many domains (e.g. the port authority in maritime

traffic management [1], or the access point in wireless networks,

etc.), and can be easily introduced in the rest (e.g. an agent mon-

itoring each charging / parking station, etc.). At the end, agents

learn to anti-coordinate their actions in a decentralized manner,

while the introduced MAs allow us to impose quotas to the use of

resources and punishments upon violating them to align individual

incentives with an efficient and fair correlated equilibrium.

A second aspect of anti-coordination problems involves conver-

gence speed. Inter-agent interactions often need to take place in an

ad-hoc fashion. Typical approaches (e.g. Monte Carlo algorithms,

Bayesian learning, bandit algorithms, etc.) tend to require too many

rounds to converge to be feasible in dynamic environments and

real-life applications. Yet, humans are able to routinely coordinate

in such an ad-hoc fashion. One key concept that facilitates human

ad-hoc (anti-)coordination is the use of conventions [24]. Behavioral
conventions are a fundamental part of human societies, yet they

have not appeared meaningfully in empirical modeling of MAS.

Inspired by human behavior, we propose the adoption of a simple

convention of courtesy. Courtesy arises by the social nature of hu-

mans. Society demands that an individual should conduct himself

in consideration of others. This allows for fast convergence, albeit



it is not game theoretically sound; people adhere to it due to social

pressure. Such problems become even more severe in situations

with scarcity of resources. Under such conditions, courtesy breaks

down and in the name of self-preservation people exhibit urgency

and competitive behavior [20]. Thus, to satisfy our rationality con-

straint (no incentive to deviate for self-interested agents) in an

artificial system, we need a deterrent mechanism.

In this paper we present a framework (CA
3
NONY: Contextual

Anti-coordination in Ad-hoc Anonymous games) for repeated al-

location games with discounting. CA
3
NONY reproduces courtesy

based on the allocation algorithm of [13], and uses monitoring and

punishments as a deterrent mechanism. It exhibits fast convergence,
and high efficiency and fairness, while relying only on occupancy

feedback which facilitates scalability and does not require any inter-

agent communication. The main contributions are:

• Introduction of an anti-coordination framework (CA
3
NONY)

which consists of a courteous convention and a monitoring
scheme.
• Proof that under such a framework, the use of the courteous

convention induces strategies that constitute an approximate

subgame-perfect equilibrium.

• Comparison to state-of-the-art bandit algorithms.

2 RELATEDWORK
In ad-hoc multi-agent (anti-)coordination the goal is to design au-

tonomous agents that achieve high flexibility and efficiency in a

setting that admits no prior coordination between the participants

[33]. Typical scenarios include the use of Monte Carlo algorithms

[6], Bayesian learning [2], or bandit algorithms [7, 11]. Tradition-

ally, pure ad-hoc approaches suffer from slow learning [15], which

makes pure ad-hoc coordination a very ambitious goal for real-

life applications. In this paper we propose a middle-ground ap-

proach. Inspired by human ad-hoc coordination, we incorporate

prior knowledge in the form of simple conventions. The coordination
can still be considered ad-hoc as it is not pre-programmed, rather

it involves learning. This allows for faster convergence compared

to pure ad-hoc approaches.

A convention is defined as a customary, expected and self-enforcing

behavioral pattern [24, 37]. In MAS, there are two scopes through

which we study conventions. First, a convention can be consid-

ered as a behavioral rule, designed and agreed upon ahead of time

or decided by a central authority [32, 35]. Second, a convention

may emerge from within the system itself through repeated inter-

actions [26, 35]. The proposed courteous convention falls on the

first category. It is incorporated as prior knowledge, and it is self-

enforcing since the induced strategies constitute an approximate

subgame-perfect equilibrium of the repeated allocation game.

An alternative way to model the anti-coordination problem is

as a multi-armed bandit (MAB) problem [3]. In MAB problems an

agent is given a number of arms and at each time-step has to decide

which arm to pull to get the maximum expected reward. Bandit (or

no-regret) algorithms typically minimize the total regret of each

agent, which is the difference between the expected received payoff

and the payoff of the best strategy in hindsight. As such, they sat-

isfy our rationality constraint since they constitute an approximate

correlated or coarse correlated equilibrium [21, 27, 30]. However,

the studied problem presents many challenges: there is no station-

ary distribution (adversarial rewards), all agents are able to learn

(similar to recursive modeling) which results to a moving-target

problem, and yielding gives a reward of 0 (desirable option for

minimizing regret, but not in respect to fairness). Moreover, regret

minimization does not necessarily lead to payoff maximization [15].

Nevertheless, due to their ability to learn from partial feedback,

bandit algorithms constitute the natural choice for a pure ad-hoc

approach. The latter motivates our choice to use them as a baseline,

since our agents only receive binary feedback of success or failure

upon taking their action.

Game theoretic equilibria are desirable (since they satisfy the

rationality constraint), but hard to obtain. Deciding whether an

anti-coordination (anonymous) game has a pure Nash equilibrium

(NE) is NP-complete [10]. Furthermore, allocation games often ad-

mit undesirable equilibria: pure NE which are efficient but not fair,

or mixed-strategy NE which are fair but not efficient [13]. Hence,

iterative best-response algorithms are not satisfactory. On the other

hand, correlated equilibria (CE) [5] can be both efficient & fair,

while from a practical perspective they constitute perhaps the most

relevant non-cooperative solution concept [21]. An optimal CE of

an anonymous game may be found in polynomial time [29]. More-

over, it is possible to achieve a CE without a correlation device

(central agent) [18, 21], using the history of the actions taken by the

opponents. However, we are interested in information-restrictive

learning rules (i.e. completely uncoupled [34]), where each agent

is only aware of his own history of action/reward pairs. Such an

approach was applied in [13] to design a decentralized algorithm

for reaching efficient & fair CE in wireless channel allocation games.

Yet, while the algorithm reaches an equilibrium in a polynomial

number of steps, cooperation to achieve this state is not rational. A

self-interested agent could keep accessing a resource forever, until

everyone else backs off (also known as ‘bully’ strategy [25]). In

this paper, we build upon the ideas of Cigler and Faltings and de-

velop an anti-coordination strategy that constitutes an approximate

subgame-perfect equilibrium, i.e. cooperation with the algorithm

is a best-response strategy at each sub-game of the original stage

game, given any history of the play.

A generalization of anti-coordination games, called dispersion

games, was described in [19]. In a dispersion game, agents are able

to choose from several actions, favoring the one that was chosen

by the smallest number of agents (analogous to minority games

[12]). The authors in [19] define a maximal dispersion outcome

as an outcome where no agent can switch to an action chosen by

fewer agents. The agents themselves do not have any particular

preference for the attained equilibrium. Contrary to that, we are

interested in achieving an efficient and fair outcome. Besides, in

many real world applications, the agents are indifferent to which

role/task/resource they attain, as long as they receive one (e.g.

wireless frequencies). Tackling dispersion games, and therefore

non-binary utilities, remains open for future research.

A similar approach to ours was introduced for weighted match-

ing in [17]. The authors propose a heuristic which is decentralized,

requires only partial feedback, and has constant in the total problem
size running time, under reasonable assumptions on the preference

domain of the agents. However, it is applicable in cooperative sce-

narios, and not in the presence of strategic agents.



3 THE CA3NONY FRAMEWORK
3.1 The Repeated Allocation Game
Let a ‘resource’ be any element that can be successfully assigned to

only one agent at a time. At each time-step,N = {1, . . . ,N } agents
try to access R = {1, . . . ,R} identical and indivisible resources,

where possibly N ≫ R. The set of available actions is denoted

as A = {Y ,A1, . . . ,AR }, where Y refers to yielding and Ar refers
to accessing resource r . We assume that access to a resource is

slotted and of equal duration
1
. A successful access yields a positive

payoff, while no access has a payoff of 0. If more than one agent

access a resource simultaneously, a collision occurs and the colliding

parties incur a cost ζ < 0. Thus, the agents only receive a binary

feedback of success or failure. Let an denote agent n’s action, and
a−n = ×∀n′∈N\{n }an′ the joint action for the rest of the agents.

The payoff function is defined as:

un (an ,a−n ) =


0, if an = Y

1, if an , Y ∧ ai , an ,∀i , n
ζ , otherwise

(1)

We assume that rewards are discounted by δ ∈ (0, 1), and, con-
forming to real-world scenarios, that each agent n is only aware of

his own history of action/reward pairs.

Finally, we assume that the agents can observe side information

from their environment at each time-step t . We call this side infor-

mation context (e.g. time, date etc.). The agents utilize this context

as a common signal in their decision-making process, a means to

learn and anti-coordinate their actions. Let K = {1, . . . ,K} de-
note the context space. The rationale behind the introduction of

the common context is that, under completely uncoupled learning

rules, having positive probability mass on undesirable actions (e.g.

collisions) is unavoidable. Moreover, from a practical perspective,

common environmental signals are amply available to the agents

[21]. We do not assume any a priori relation between the context

space and the problem. The only constraints are that the values

should repeat periodically, and satisfy K = ⌈N /R⌉.
The context signals could be produced either on the resource

side (e.g. by the port authority in maritime traffic management, or

the access point in wireless networks), or in a decentralized manner

(e.g. in distributed networks with no authorities the senders can

attach identifier signals to data traffic [36]). Finally, in situations

where communication is possible, the agents can agree upon the

signal themselves by solving the distributed consensus problem.

3.2 Adopted Convention
The adopted convention is based on the cooperative allocation

algorithm of [13]. Each agent n has a strategy дn : K → A that

determines a resource to access at time-step t after having observed
context kt . The strategy is initialized uniformly at random in A.

If дn (kt ) = Ar , then agent n accesses resource r . Otherwise, if
дn (kt ) = Y , the agent does not access a resource but instead chooses
uniformly at random a resource r to monitor for activity. If it is

free, then the agent updates дn (kt ) ← Ar (see Alg. 1).

1
This is done to facilitate the proofs. Real world problems have this property anyway

(e.g. access to radio channels, role allocation in a plan, etc.), and the algorithms we

compare to all work for slotted resources.

Algorithm 1 Learning rule.

Require: Initialize дn u.a.r. in A. Set accessedn ← False .
1: for kt ∈ K do
2: Agents observe context kt
3: if дn (kt ) = Ar & accessedn = False then
4: Agent n accesses resource r
5: if Collision(r ) then
6: Set дn (kt ) ← Y with probability pbackof f > 0

7: else
8: Set accessedn ← True
9: end if
10: else if дn (kt ) = Y then
11: Agent n monitors random resource r ∈ R
12: if Free(r ) then
13: Set дn (kt ) ← Ar
14: end if
15: end if
16: end for
17: Set accessedn ← False

In [13], agents back-off probabilistically in case of a collision

(set дn (kt ) ← Y with probability pnbackof f ). In such a setting, it is

possible to reach a symmetric subgame-perfect equilibrium. But

in order to actually play it, the agents need to be able to calculate

it. It is not always possible to obtain the closed form of the back-

off probability distribution of each resource. Furthermore, a self-

interested agent could stubbornly keep accessing a resource forever,

until everyone else backs off (‘bully’ strategy [25]).

Instead, we adopted a simple convention where agents are being

courteous, i.e. if there is a collision, the colliding agents will back-off
with some constant positive probability:pnbackof f = p > 0,∀n ∈ N .

Being courteous, though, does not satisfy the rationality constraint.

However, a uniform distribution of resources is socially optimal (i.e.

fair allocations maximize the social welfare). Hence, if we introduce

quotas to the resources and punishments upon violating them,

courtesy induces rational strategies. In the following sections we

introduce amonitoring scheme and prove that the resulting strategy

constitutes an ϵ-subgame-perfect equilibrium.

3.3 Rationality
In order to ensure the proposed convention’s rationality, the agents

must be assured that they will eventually be successful, i.e. we must

provide safeguards against the monopolization of resources. The

proposed framework employs simple Monitoring Authorities (MA).

The MAs do not require any planning capabilities, nor any knowl-

edge of the agents’ plans and preferences. Their primary goal is to

keep track of successful accesses. Depending on the domain, MAs

may already exist naturally, or can easily be introduced. Examples

include centralized MAs like the port authority in maritime traf-

fic management, or a set of decentralized MAs (one per resource)

like the access points in wireless networks, or agents monitoring

a charging / parking station. Their function is twofold. First, they

could provide occupancy signals. Agents (e.g. CA
3
NONY , bandit,

or Q-learning agents) must be able to receive some form of feed-

back from their environment to inform collisions and detect free



resources. This could be achieved (if possible) by the use of various

sensors, or by receiving occupancy signals (e.g. 0, 1) from the MAs.

Second, (which is their principal purpose) MAs deter agents from

monopolizing resources to the point that each agent can access a

resource only for one context value out of K . To achieve the latter,

MAs must be able to keep track of successful accesses. Upon the

violation of the imposed quotas, the framework is responsible to

enforce the necessary punishments. Punishments are application

specific. They can be individual (e.g. in a wireless scenario, if an

agent transmits to some other than the designated channel, then

his packets will no longer be relayed), or group punishments (e.g.

if quotas are exceeded, access is denied for everyone). The imposed

punishments make exceeding the quotas an irrational strategy (sim-

ulated in Alg. 1 by the accessedn flag), which in turn aligns the

individual incentives with an efficient & fair correlated equilibrium.

3.3.1 Access Monitoring. The primary function of the employed

MAs is the tracking of successful accesses by the agents. The latter

can be achieved in various ways, depending on the domain. The

simplest one would be to maintain a log with successful accesses

per episode (period of context values), whether we are dealing

with a centralized MA or set of decentralized MAs that are able to

communicate to ensure coherence. For more involved scenarios (e.g.

if we require agent anonymity per access) we may employ more

complex schemes, e.g. using tokens, or artificial currency (solely

as an internal mechanism). Note that the latter does not fence the

resources (i.e. punishments are still required). In what follows, we

present such a self-regulated monitoring scheme.

Initially all the agents that ‘buy-in’ are issued the same amount

m ∈ R of artificial cash (AC). This amount also corresponds to the

initial fee for every resource fr ←m. To allow access to resource

r , the MA of r charges fr units of AC, and monitors the event.

If there was a successful access, the MA reimburses the amount

of (1 − ξ )fr AC to the accessing agent, where ξ → 0 ∈ R is a

commission fee. Otherwise, the MA reimburses the full amount

of fr AC to the colliding agents, so that they are able to try again

for a different context value. Finally, after each episode, the MAs

lower the fee to f ′r ← (1 − ξ )fr ,∀r ∈ R. After every successful

access, the amount of AC that an agent possesses drops below the

access fee of a resource. Waiting for the fee to drop to the point

that fr = m/2 is not rational since, assuming ξ → 0, the number

of iterations required to allow accessing two resources at the same

time will reach ∞. At that point the rest of the agents will have

reached a correlated equilibrium and the adversarial agent will not

have an incentive to access an additional resource, besides the one

that corresponds to him, since it would result in a collision. If, due

to implementation constraints, we can not select a small ξ , the MAs

can change the artificial currency every I episodes, invalidating the
old one and again making such strategy irrational.

3.4 Rate of convergence
Theorem 3.1. In a repeated allocation game with N agents and R

resources, the expected number of steps before Alg. 1 converges to a
correlated equilibrium is bounded by:

O

(
N

(
log

⌈
N

R

⌉
+ 1

)
(logN + R)

)
(2)

Proof. The adopted learning rule is based on the allocation

algorithm of [13]. For N ,R,K ≥ 1, and back-off probability 0 < p <
1, the expected number of steps before the algorithm converges

is bounded by (3)
2
, which for a constant back-off probability and

K = ⌈N /R⌉ gives the required bound.

O

(
(K logK + 2K)R

2 − p

2(1 − p)

(
1

p
logN + R

))
(3)

�

Corollary 3.2. Under a common, constant back-off probability
assumption, p∗ = 2 −

√
2 minimizes the convergence time of Alg. 1 in

high congestion scenarios, i.e. N ≫ R.

Proof. According to bound (3), in high congestion scenarios

(i.e.
N
R = K →∞), the common, constant back-off probability that

minimizes the convergence time is:

p∗ = arg min

(
2 − p

2(1 − p)

1

p

)
= 2 −

√
2 (4)

�

3.5 Courtesy Pays Off
In this section we prove that if the agents back-off with a constant

positive probability pbackof f > 0, then Alg. 1 induces a strategy

that is an ϵ-equilibrium.

Suppose that in a repeated allocation game with discounting

(δ ∈ (0, 1)) the agents who collide back-off with a constant prob-

ability pbackof f > 0. Let σp denote the aforementioned strategy

(courteous strategy), and σ ∗ denote the optimal (best-response)

strategy under the monitoring authorities (possibly better than a

stage game NE). Moreover, let Un (σ ,σ−n ,δ ) =
∑∞
t=0 δ

tun (a
t
n ,a

t
−n )

denote the cumulative payoff of agent n following strategy σ , as-
suming the rest of the agents follow the strategy σ−n . The following
theorem proves that starting at any time-step, agent n does not

gain more than ϵ by deviating to the optimal strategy σ ∗.

Theorem 3.3. Under a high enough discount factor, the courteous
strategy σp constitutes an approximate subgame-perfect equilibrium,
i.e. ∀ϵ > 0, ∃δ0 ∈ (0, 1) such that ∀δ ,δ0 ≤ δ < 1:

E[Un (σ
p
n ,σ

p
−n ,δ )] > (1 − ϵ)E[Un (σ

∗
n ,σ

p
−n ,δ )]

Proof. Note that E[Un (σ
∗
n ,σ
∗
−n ,δ )] ≥ E[Un (σ

∗
n ,σ

p
−n ,δ )], since

by playing σ
p
−n the rest of the agents can potentially introduce addi-

tional collisions. Thus, it suffices to prove thatE[Un (σ
p
n ,σ

p
−n ,δ )] >

(1 − ϵ)E[Un (σ
∗
n ,σ
∗
−n ,δ )].

The introduced monitoring scheme prohibits the monopolization

of resources, i.e. each agent can only access a resource for his

corresponding context value. Thus, the best-response strategy’s

(σ ∗) payoff for some δ is bounded by:

E[Un (σ
∗
n ,σ
∗
−n ,δ )] ≤ 1 + δK + δ2K + · · · =

∞∑
i=0

δ iK =
1

1 − δK
(5)

2
Slightly tighter bound on the convergence speed of the adopted learning rule, based

on Theorems 12 and 13 of [13]. See the appendix for the proof.



When agents adopt the courteous convention, in each round until

the system converges to a correlated equilibrium, the agents receive

a payoff between ζ < 0 (collision cost) and 1. Thus, until conver-

gence, the expected payoff is lower bounded by ζ
τ−1∑
i=0

δ iK = ζ 1−δ τK
1−δK ,

where τ is the number of steps to converge. After convergence,

their expected payoff is

∞∑
i=0

δτ+iK = δ τ
1−δK . Hence, the convention

induced strategy’s payoff is at least:

E[Un (σ
p
n ,σ

p
−n ,δ )] ≥

∞∑
τ=1

Pr [conv. in τ steps] ·

(
ζ (1 − δτK ) + δτ

1 − δK

)
We can define a random variable X such that X = τ if the

algorithm converges after exactly τ steps. Since δx is a convex

function we have that E(δx ) ≥ δE(x ), therefore:

E[Un (σ
p
n ,σ

p
−n ,δ )] ≥

ζ (1 − δE(X )K ) + δE(X )

1 − δK
(6)

By dividing (6) by (5) we get:

E[Un (σ
p
n ,σ

p
−n ,δ )]

E[Un (σ
∗
n ,σ
∗
−n ,δ )]

≥ ζ (1 − δE(X )K ) + δE(X ) (7)

E(X ) does not depend on δ . Moreover, δE(X ) is continuous in δ ,

monotonous, and lim

δ→1
−
δE(X ) = 1. Thus, we can take the limit of

(7) as δ → 1
−
, which equals to lim

δ→1
−

E[Un (σ
p
n ,σ

p
−n,δ )]

E[Un (σ ∗n,σ ∗−n,δ )]
= 1 �

In order to guarantee rationality, the discount factor δ must be

close to 1 since, as δ gets closer to 1, the agents do not care whether

they access now or in some future round. Since the proposed moni-

toring scheme guarantees that every agent will access a resource

for his corresponding context value, when δ → 1, the expected

payoff for agents who are accessing a resource and for those who

have not accessed a resource yet will be the same. In other words,

the cost (overhead) of learning the correlated equilibrium decreases.

3.6 Indifference Period
In many real world applications, agents are indifferent in claiming

a resource in a period of Tind rounds, i.e. δt = 1,∀t ≤ Tind . E.g.
data of wireless transmitting devices might remain relevant for

a specific time-window, during which the agent is indifferent of

transmitting. In such cases, we can use the Markov bound to prove

that with high probability the proposed algorithm will converge in

underTind time-steps, thus satisfying the rationality constraint. We

assume the agents are willing to accept linear ‘delay’ with regard

to the number of resources R, the number of agents N , and the size

of the context space K , specifically:

Tind = O (RNK) (8)

Theorem 3.4. Under a linear indifference period Tind (i.e. δt =
1,∀t ≤ Tind = O (RNK)) the probability of the system of agents
following Alg. 1 not having converged during Tind diminishes as the
congestion increases (NR →∞).

Proof. Using the Markov bound, it follows that the probability

that the system takes more than the accepted number of steps (Tind )
to converge is:

Pr [¬conv. after Tind ] = O
©«
(
log

⌈N
R
⌉
+ 1

)
(logN + R)

N

ª®®¬
Taking the limit: lim

N
R →∞

Pr [¬conv. after Tind ] = 0. �

Even though the Markov’s inequality generally does not give

very good bounds when used directly, Th. 3.4 proves that our al-

gorithm converges in the required time with high probability. The

latter holds under high congestion, which constitutes the more

interesting scenario since for small number of agents the required

time to converge is only a few hundreds of time-steps. Moreover,

the higher the indifference period, the higher the probability to

converge under such time-constraint. For quasilinear indifference

period for example, the system converges in the required time-

window with high probability even for a small number of agents.

We can further strengthen our rationality hypothesis by using a

tighter bound (e.g. Chebyshev’s inequality), albeit computing the

theoretical variance of the convergence time is an arduous task,

thus it remains open for future work.

4 EVALUATION
In this section we model the resource allocation problem as a

multi-armed bandit problem and provide simulation results of

CA
3
NONY’s performance in comparison to state-of-the-art, well

established bandit algorithms, namely the EXP4 [4], EXP4.P [8],

and EXP3 [4]. In every case we report the average value over 128

runs of the same simulation. For the EXP family of algorithms, the

input parameters are set to their optimal values, as prescribed in

the aforementioned publications. We assume a reward of 1 for a

successful access, −1 if there is a collision, and 0 if the agent yielded.

4.0.1 Level of Courtesy. We evaluated different back-off prob-

abilities (pbackof f ∈ {0.1, 0.25, 2 −
√
2, 0.75, 0.9}) for R = K ∈

{2, 4, 8, 16} and N = R × K . There was no significant difference in

convergence time, but since pbackof f is directly correlated with the

number of collisions, it can have significant impact on the average

payoff (see Table 1). It is important to note, though, that agents do

not have global nor local knowledge of the level of congestion of

the system (they only receive binary occupancy feedback for one

resource per time-step). Thus, agents can not select the optimal

back-off probability depending on congestion. In what follows, the

back-off probability of CA
3
NONY is set to pbackof f = 2 −

√
2 of

Eq. 4, which is only optimal under high congestion settings (i.e.

N
R = K →∞), yet constitutes a safe option. Note that the provided
theoretical analysis holds for any constant back-off probability.

4.0.2 Bandits & Monitoring. CA3
NONY has three meta actions

(Access, Yield, and Monitor {A,Y ,M}), while bandit algorithms

have only two ({A,Y }), and CA
3
NONY assumes the existence of

monitoring authorities (MAs). For fairness’ sake in the reported

results, we made the following two modifications. First, we include



Table 1: Avg. payoffdepending on the level of courtesy (back-
off probability), K = R,N = R × K .

pbackof f R = 2 R = 4 R = 8 R = 16

0.1 37.6 -4.7 -39.5 -63.1

0.25 43.6 10.0 -16.9 -40.0

2 −
√
2 45.7 15.6 -5.2 -23.0

0.75 45.5 15.7 -3.7 -20.6

0.9 44.2 12.5 -5.8 -19.4

a variation of CA
3
NONY , denoted as CA

3
NONY*, where we as-

sume agents incur a cost (equal to collision cost ζ ) every time they

monitor a resource (reflected in Table 3). Second, all the employed

bandit algorithms make use of the MAs, which indirectly grants

them the the ability to monitor resources as well. More specifically,

the accumulated payoff is updated only if they are allowed to access

a resource. If not, we consider it a monitoring action, which means

the agents still receive occupancy feedback. The latter is important,

otherwise the bandit algorithms would require significantly longer

time to converge. Note that, contrary to CA
3
NONY*, monitoring is

free for bandit algorithms with respect to the accumulated payoff,

i.e. they do not incur a collision cost.

4.1 Employed Bandit Algorithms
The reward of each arm does not follow a fixed probability distribu-

tion (adversarial setting). Moreover, the agents are able to observe

side-information (context) at each time-step t . The arm that yields

the highest expected reward can be different depending on the con-

text. Hence we focus on adversarial contextual bandit algorithms

(see [38] for a survey). A typical approach is to use expert advice.

In this method we assume a set of expertsM = {1, . . . ,M} who
generate a probability distribution on which arm to pull depending

on the context. A no-regret algorithm performs asymptotically as

well as the best expert. Such algorithms are the EXP4 and EXP4.P,

the difference being that EXP4 exhibits high variance [38], while

EXP4.P achieves the same regret with high probability by combining

the confidence bounds of UCB1 [3] and EXP4. The computational

complexity and memory requirements of the above algorithms are

linear inM , making them intractable for large number of experts.

In order to deal with the increased complexity in larger simulations,

we gave an edge to these algorithms by restricting the set of experts

M to the same uniform correlated equilibria (CE) that CA
3
NONY

converges to. The latter enabled us to perform larger simulations

(the unrestricted versions could not handle N ≥ 64), while resulting

in the same order of magnitude convergence time, slightly higher

average payoff, and significantly higher fairness (> 35% since by

design the experts proposed fair CE). Alternatively, we can use

non-contextual adversarial bandit algorithms, such as the EXP3.

Moreover, we can convert EXP3 to a contextual algorithm by set-

ting up a separate instance for all k ∈ K . We call this ‘CEXP3’. This

results in a contextual bandit algorithm which has the edge over

EXP4 from an implementation viewpoint since its running time

at each time-step is O(R) and its memory requirement is O(KR)
(CA

3
NONY’s is O(1) and O(K) respectively).

Figure 1: Utilization: R = 4,N = 16 (x-axis in log scale).

4.2 Simulation Results
4.2.1 Convergence Speed & Efficiency. We know that CA

3
NONY

converges to a CE which is efficient. If all agents follow the cour-

teous convention of Alg. 1, the system converges to a state where

no resources remain un-utilized and there are no collisions (Th.

13 of [13]). Furthermore, Th. 3.1 argues for fast convergence. The

former are both corroborated by Fig. 1 (similar results (> ×102

faster convergence) were acquired for R ∈ {2, 8, 16} as well.). Fig.
1 depicts the total utilization of resources for a simulation period

of T = 10
6
time-steps. Note that the x-axis is in logarithmic scale.

CA
3
NONY converges significantly (> ×102) faster than the bandit

algorithms to a state of 100% efficiency. On the other hand, the ban-

dit algorithms exhibit high variance, never achieve 100% efficiency,

and are not able to handle efficiently the increase in context space

size and number of resources.

4.2.2 Fairness. The usual predicament of efficient equilibria for

allocation games is that they assign the resources only to a fixed sub-

set of agents, which leads to an unfair result (e.g. an efficient pure

NE (PNE) is for R agents to access and N − R agents to yield). This

is not the case for CA
3
NONY , which converges to an equilibrium

that is not just efficient but fair as well. Due to the enforced mon-

itoring scheme, all agents acquire the same amount of resources.

As a measure of fairness, we will use the Jain index [22]. The Jain

index is widely used by economists, and exhibits a lot of desirable

properties such as: population size independence, continuity, scale

and metric independence, and boundedness. For an allocation game

of N agents, such that the nth agent receives an allocation of xn ,

the Jain index is given by J(x) =
��∑n∈N xn

��2 / N ∑
n∈N x2n . An

allocation is considered fair, iff J(x) = 1, x = (x1, . . . ,xN )⊤.
Table 2 presents the expected Jain Index of the evaluated algo-

rithms at the end of the time horizon T . CA3
NONY converges to a

fair equilibrium, achieving a Jain index of 1. The EXP4 and EXP4.P

were the fairest amongst the bandit algorithms, achieving a Jain

index of close to 1. This is to be expected since the set of expertsM

is limited to the same set of equilibria that CA
3
NONY converges

to. On the other hand, EXP3 and CEXP3 performed considerably

worse, with the EXP3 exhibiting the worst performance in terms of

fairness, equal to a PNE’s: JPN E (x) = R2

NR =
1

K = JEXP3(x).

4.2.3 Average Payoff. The average payoff corresponds to the

total discounted payoff an agent would receive in the time horizon

T . Table 3 presents the average payoff for the studied algorithms.

The clustered pairs of bandit algorithms exhibited < 1% difference,

hence we included the average value of the pair. The discount

factor was set to δ = 0.99. At the top half we do not assume any



Table 2: Fairness (Jain Index), K = R,N = R × K .

R = 2 R = 4 R = 8 R = 16

CA
3
NONY 1.0000 1.0000 1.0000 1.0000

EXP3 0.5000 0.2500 0.1250 0.0625

CEXP3 0.7018 0.5865 0.5341 0.9638

EXP4 1.0000 0.9999 0.9959 0.9198

EXP4.P 1.0000 0.9999 0.9798 0.7503

Table 3: Average Payoff, K = R,N = R × K .

R = 2 R = 4 R = 8 R = 16

CA
3
NONY 45.4 15.7 -5.3 -23.0

CA
3
NONY* 20.0 -22.4 -50.6 -72.6

(C)EXP3 -72.4 -93.1 -99.8 -100.0

EXP4(.P) -59.0 -81.0 -90.7 -95.4

CA
3
NONY 53.3 79.0 502.5 4057.5

CA
3
NONY* 23.8 -55.5 -1337.1 -26723.9

(C)EXP3 -84.0 -331.0 -4175.7 -60595.1

EXP4(.P) -68.4 -288.4 -3807.1 -62631.5

indifference period, while at the bottom half we assume linear

indifference period (δt = 1,∀t ≤ Tind , where Tind is given by Eq.

8). Recall that CA
3
NONY and the bandit algorithms do not incur

any cost for monitoring resources, while CA
3
NONY* incurs a cost

equal to the collision cost ζ .
Once more, CA

3
NONY (and even CA

3
NONY*) significantly out-

performs all the bandit algorithms. The latter have relatively similar

performance, with EXP4 and EXP4.P being the best amongst them.

It is worth noting that adding an indifference period has a dramatic

effect on the results. Comparing CA
3
NONY to bandit algorithms

we observe that CA
3
NONY achieves a large increase on average

payoff, while the opposite happens for the bandit algorithms. This

is because the learning rule of Alg. 1 prohibits from accessing an al-

ready claimed resource, thus minimizing collisions. On the contrary,

bandit algorithms constantly explore (they assign a positive proba-

bility mass to every arm) which leads to collisions. In a multi-agent

system where every agent learns this can have a cascading effect.

The latter becomes apparent when fixing δ = 1 for Tind steps. The

collision cost remains high for longer which, as seen by Table 3,

has a significant impact on the bandit algorithms’ performance.

4.2.4 Large Scale Systems. The innovation of CA
3
NONY stems

from the adoption of a simple convention, which allows its applica-

bility to large scale MAS. To evaluate the latter, Fig. 2 and 3 depict

the convergence time for increasing number of resources R, and

increasing system congestion (
N
R = K) respectively. Both graphs

are in a double logarithmic scale, and the error bars represent one

standard deviation of uncertainty. The total number of agents is

given by N = R × K . Thus, the largest simulations involve 16.384

agents. Along with CA
3
NONY, we depict the fastest (based on the

previous simulations) of the bandit algorithms, namely EXP3. In

both cases we acquire ×103 − ×105 faster convergence. The above

validate CA
3
NONY’s performance in both scenarios with abun-

dance (N ≈ R or small K), and scarcity of resources (N ≫ R or

large K). As depicted, CA3
NONY is significantly faster than the

Figure 2: Convergence time: increasing #resources R, vary-
ing context space size K , N = R × K (double log scale).

Figure 3: Convergence time: increasing congestion (NR = K),
varying #resources R, N = R × K (double log scale).

EXP3 and can gracefully handle increasing number of resources,

and high congestion. Finally note that, in several of the simulations,

EXP3 was unable to reach its convergence goal of 90% efficiency

(utilization of resources) in a reasonable amount of computation

time (1.5× 108 time-steps), hence the resulting gaps in EXP3’s lines

in Fig. 2 and 3. Especially in situations with scarcity of resources

the utilization was significantly lower.

5 CONCLUSION
In this paper we proposed CA

3
NONY, an anti-coordination frame-

work under rationality constraints. It is based on a simple, human-

inspired convention of courtesy which prescribes a positive back-

off probability in case of a collision. Coupled with a monitoring

scheme which deters the monopolization of resources, we proved

that the induced strategy constitutes an ϵ-subgame-perfect equilib-

rium.We compared CA
3
NONY to state-of-the-art bandit algorithms,

namely EXP3, EXP4, and EXP4.P. Simulation results demonstrated

that CA
3
NONY outperforms these algorithms by achieving more

than two orders of magnitude faster convergence, a fair allocation,

and higher average payoff. The aforementioned gains suggest that

human-inspired conventions may prove beneficial in other ad-hoc

coordination scenarios as well.

A APPENDIX
A.1 Proof of Bound (3)
In this section we provide a formal proof of bound (3). The proof is

an adaptation of the convergence proof of [13]. We will prove the

following theorem:

Theorem A.1. For N agents and R ≥ 1, K ≥ 1, 0 < p < 1 the
expected number of steps before the learning algorithm converges to
an efficient correlated equilibrium of the allocation game for every

k ∈ K is O
(
(K logK + 2K)R

2−p
2(1−p)

(
1

p logN + R
)
+ 1

)
.



We begin with the case of having multiple agents but only a sin-

gle resource (R = 1). We will describe the execution of the proposed

learning rule as a discrete time Markov chain (DTMC)
3
. In every

time-step, each agent performs a Bernoulli trial with probability

of ‘success’ 1 − p (remain in the competition), and failure p (back-

off). When N agents compete for a single resource, a state of the

system is a vector {0, 1}N denoting the individual agents that still

compete for that resource. But, since the back-off probability is the

same for everyone, we are only interested in how many agents are

competing and not which ones. Thus, in the single resource case

(R = 1), we can describe the execution of the proposed algorithm

using the following chain:

Definition A.2. Let {Xt }t ≥0 be a DTMC on state space S =
{0, 1, . . . ,N } denoting the number of agents still competing for

the resource. The transition probabilities are as follows:

Pr (Xt+1 = N |Xt = 0) = 1 restart

Pr (Xt+1 = 1 |Xt = 1) = 1 absorbing

Pr (Xt+1 = j |Xt = i) =
(
i
j

)
pi−j (1 − p)j i > 1, j ≤ i

(all the other transition probabilities are zero)

Intuitively, this Markov chain describes the number of individ-

uals in a decreasing population, but with two caveats: The goal

(absorbing state) is to reach a point where only one individual

remains, and if we reach zero, we restart.

Lemma A.3. [13] Let A = {0, 1}. The expected hitting time of
the set of states A in the Markov chain described in Definition A.2 is

O

(
1

p logN
)
.

Definition A.4. Let {Yt }t ≥0 be a DTMC on state space S =
{0, 1, . . . ,N } with the following transition probabilities (two ab-

sorbing states, 0 and 1):

Pr (Yt+1 = 0 |Yt = 0) = 1 absorbing

Pr (Yt+1 = 1 |Yt = 1) = 1 absorbing

Pr (Yt+1 = j |Yt = i) =
(
i
j

)
pi−j (1 − p)j i > 1, j ≤ i

(all the other transition probabilities are zero)

Let hAi denote the hitting probability of a set of states A, starting
from state i . We will prove the following lemma.

Lemma A.5. The hitting probability of the absorbing state {1},
starting from any state i ≥ 1, of the DTMC {Yt } of Definition A.4 is
given by Eq. 9. This is a tight lower bound.

h{1}i = Ω

(
2(1 − p)
2 − p

)
, ∀i ≥ 1 (9)

Proof. For simplicity we denote hi
∆
= h
{1}

i . We will show that

for p ∈ (0, 1), hi ≥ λ =
2(1−p)
2−p ,∀i ≥ 1 using induction. First note

3
For an introduction on Markov chains see [28]

that since state {0} is an absorbing state, h0 = 0, h1 = 1 ≥ λ and

that λ ∈ (0, 1).
The vector of hitting probabilitieshA = (hAi : i ∈ S = {0, 1, . . . ,N })

for a set of states A is the minimal non-negative solution to the

system of linear equations 10:


hAi = 1, if i ∈ A
hAi =

∑
j∈S

pi jhAj , if i < A (10)

By replacing pi j with the probabilities of Definition A.4, the

system of equations 10 becomes:


hAi = 1, if i ∈ A

hAi =
i∑
j=0

(i
j
)
pi−j (1 − p)jhAj , if i < A

(11)

Base case:

h2 = (1 − p)2h2 + 2p(1 − p)h1 + p2h0 =
2p(1 − p)
1 − (1 − p)2

=
2(1 − p)
2 − p

≥ λ

Inductive step: We assume that ∀j ≤ i − 1⇒ hj ≥ λ. We will prove

that hi ≥ λ,∀i > 2.

hi =
i∑
j=0

(
i
j

)
pi−j (1 − p)jhj

= pih0 + ipi−1(1 − p)h1 +
i−1∑
j=2

(
i
j

)
pi−j (1 − p)jhj + (1 − p)ihi

≥ pih0 + ipi−1(1 − p)h1 +
i−1∑
j=2

(
i
j

)
pi−j (1 − p)jλ + (1 − p)ihi

= ipi−1(1 − p) + [1 − pi − (1 − p)i − ipi−1(1 − p)]λ + (1 − p)ihi

⇒ hi = λ −
pi

1 − (1 − p)i
λ +

ipi−1(1 − p)
1 − (1 − p)i

(1 − λ)

We want to prove that hi ≥ λ:

ipi−1(1 − p)
1 − (1 − p)i

(1 − λ) ≥
pi

1 − (1 − p)i
λ ⇒

ipi−1(1 − p) + pi − pi

pi + ipi−1(1 − p)
≥ λ ⇒

1 −
pi

pi + ipi−1(1 − p)
≥

2(1 − p)
2 − p

⇒

pi

pi + ipi−1(1 − p)
≤

p
2 − p

⇒

pi (2 − p) ≤ p[pi + ipi−1(1 − p)] ⇒

2 − 2p − i + ip ≤ 0⇒ 2 − i − p(2 − i) ≤ 0⇒

(2 − i)(1 − p) ≤ 0⇒ 2 − i ≤ 0

which holds since i > 2. The above bound is also tight since ∃i ∈
S : hi = λ, specifically h2 = λ. �

Plugging the above hitting probability bound to the convergence

proof of [13], results on the required bound.
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