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Abstract

We present a brief overview of learning dynamics for anti-
coordination in ad-hoc scenarios. Specifically, we consider
multi-armed bandit algorithms, reinforcement learning, and
symmetric strategies for the repeated resource allocation
game. In a multi-agent system with dynamic population
where every agent is able to learn, the anti-coordination prob-
lem exhibits unique challenges. Thus, it is essential for the
success of a joint plan that the agents can quickly and ro-
bustly learn their optimal behavior. In this work we will fo-
cus on convergence rate, efficiency, and fairness in the final
outcome.

1 Introduction

In multi-agent systems, most scenarios require coordination
on the same value which involves solving the consensus
problem, a well-studied problem in distributed computing
(Coulouris, Dollimore, and Kindberg 2005). However, there
are also many situations where agents are required to choose
distinct actions as in role allocation (e.g. teammates dur-
ing a game), task assignment (e.g. employees of a factory),
resource allocation (e.g. wireless bandwidth (channels) for
IoT devices, parking spaces and/or charging stations for
autonomous vehicles) etc. This is called anti-coordination.
Figure 1 provides an illustrative example. For simplicity, we
focus on resource allocation scenarios, although the consid-
ered learning models can be applied in any analogous anti-
coordination scenario.

Anti-coordination in multi-agent systems presents many
unique challenges. First, it requires agents to take differ-
ent actions while facing the same problem. Hence, we need
agents that are able to learn to behave differently in the pres-
ence of (possibly) identical agents while having similar pref-
erences across their available actions. An autonomous vehi-
cle would prefer the route with the least traffic, an IoT device
would prefer the higher bandwidth channel, a bidding agent
participating in multiple auctions would prefer the one with
the fewer participants, etc. Nevertheless, in order to achieve
high efficiency, we need some agents to take less desirable
actions. An added challenge is ensuring fairness in the final
outcome, i.e. make sure that those agents are not exploited,
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Figure 1: Every day N employees have lunch at a cafete-
ria which accommodates R patrons, thus their goal is to
anti-coordinate their lunch breaks. Each of them has a strat-
egy (gn, ∀n ∈ {1, . . . , N}) for selecting their lunch time.
All employees have similar preferences (e.g. have lunch be-
tween 12p.m. - 2p.m., find an empty seat etc.). Each time
they attempt to have a lunch break, they update their strat-
egy based on their personal feedback of success or failure.

and ensuring that self-interested, rational agents are not able
to manipulate the algorithm to maximize their utility. Fur-
thermore, in real world applications agents tend to receive
only partial feedback; i.e. each agent is only aware of his
own history of action/reward pairs. Hence, we require com-
pletely uncoupled learning rules and agents that are capable
of achieving high efficiency and fast convergence in such
information-restrictive settings. Finally, intra-agent interac-
tions might need to take place in an ad-hoc fashion, which
brings forth the need for robust agents that are able to coor-
dinate with previously un-encountered participants (Stone et
al. 2010). However, planning in such environments becomes
even more challenging. Part of this difficulty stems from the
lack of responsiveness and/or communication between the
participants.

Little work has been done in anti-coordination problems
as compared to classical coordination scenarios. Mapping
anti-coordination to the consensus problem results in an ex-
ponential expansion of the solution space. Hence, special
effort is required from a learning perspective. In this pa-
per we present a brief comparative overview of multi-agent
learning paradigms applicable to the anti-coordination set-
ting. The rest of the paper is organized as follows. Section
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2 provide a formal definition of the repeated resource allo-
cation (anti-coordination) problem, Section 3 presents the
evaluated multi-agent learning models, and finally, Section
4 concludes the paper.

2 Preliminaries

2.1 The Repeated Resource Allocation Problem

In this section we formally define the repeated resource al-
location problem. The goal for the agents is to maximize
their discounted cumulative payoff. We refer to a ‘resource’
as any element that can be successfully assigned to only
one agent at a time. At each time-step, N = {1, . . . , N}
agents try to access R = {1, . . . , R} identical and indi-
visible resources. The set of available actions is denoted as
A = {Y,A1, . . . , AR}, where Y refers to yielding, while
Ar refers to accessing resource r. We assume that access to
a resource is slotted and of equal duration. A successful ac-
cess yields a positive payoff, while no access has a payoff
of 0. If more than one agent accesses a resource simultane-
ously, a collision occurs and the colliding parties incur a cost
ζ < 0. The payoff function is defined by Equation 1, where
an denotes agent n’s action, and a−n = ×∀n′∈N\{n}an′ the
joint action for the rest of the agents.

un(an, a−n) =

⎧⎪⎨
⎪⎩
0, if an = Y

1, if an �= Y ∧ ai �= an, ∀i �= n

ζ, otherwise
(1)

In accordance to real-world phenomena we further-
more assume that the agents receive only partial feed-
back of success or failure; i.e. each agent n is only
aware of his own history of action/reward pairs, Ht

n =
{(ατ

n, un(α
τ
n, α

τ
−n))∀τ≤t}. The payoff matrix of the stage-

game of a simple 1-resource, 2-agents, repeated resource al-
location game is presented in Figure 2.

Finally, we assume that the agents can observe side infor-
mation (context) from their environment at each time-step
t (e.g. time, date etc. in the example of Figure 1), before
taking their action. Let K = {1, . . . ,K} denote the context
space. We do not assume any a priori relation between the
context space and the problem. The only constraint is that
the context values should repeat periodically. In this work
we assume that the context is a set of random integers. The
motivation behind the introduction of the context space will
become apparent in the following section. In short, we want
to achieve high efficiency and fairness. In anti-coordination
games with completely uncoupled learning rules such a goal
is hard to attain since the aforesaid rules do not allow for cor-
relation between the agents. The introduction of a common
signal (such as the proposed context) resolves that issue.

2.2 Solution Concepts

In this section we examine possible game theory1 solution
concepts of the repeated resource allocation game, focusing
on the following two axes:

1See (Nisan et al. 2007) for an introduction to game theory.

Y A
Y 0, 0 0, 1
A 1, 0 ζ, ζ

Figure 2: Resource allocation game, R = 1, N = 2. Two
agents want to access a single resource. Both of them have
two actions, either to yield (Y), and get a payoff of 0, or
access (A). If only one of the agents accesses the resource,
he gets a payoff of 1. But if both of them access the resource
at the same time, they collide and both incur a cost ζ < 0.

i Efficiency: Percentage of utilized resources after conver-
gence (alternatively, social welfare).

ii Ex-post Fairness: Equality of allotted resources after
convergence (alternatively, ex-post expected payoff).

As a measure of fairness, we will use the Jain index (Jain,
Chiu, and Hawe 1998). The Jain index exhibits a lot of desir-
able properties such as: population size independence, conti-
nuity, scale and metric independence, and boundedness. For
a resource allocation game of N users, such that the nth user
receives an (expected) allocation of wn ≥ 0 resources, the
Jain index is given by Equation 2. This equation measures
the equality of allocation w = (w1, . . . , wN )�. An alloca-
tion is considered fair, iff J(w) = 1.

J(w) =

∣∣∣∑n∈N wn

∣∣∣2
N

∑
n∈N w2

n

(2)

Resource allocation games often admit undesirable equi-
libria; asymmetric pure Nash equilibria (PNE) which are ef-
ficient but not fair, or symmetric mixed-strategy Nash equi-
libria (MNE) which are fair but not efficient. For example,
the set of asymmetric PNE corresponds to R agents access-
ing while N − R yield. This results to 100% efficiency,
but JPNE(w) = R2

NR = R
N . In the symmetric MNE, each

agent decides to access with probability Pr[A \ {Y }] =

min

{
R

(
1− N−1

√
|ζ|

1+|ζ|

)
, 1

}
and then chooses which re-

source to access uniformly at random (Cigler 2013)). The
latter results to expected JMNE(w) = 1, but 0% expected
efficiency (assuming small number of resources, R). As
such, the aforementioned equilibria are rather undesirable.
We can overcome the previously mentioned drawbacks us-
ing the notion of correlated equilibria (Aumann 1974).

Correlated equilibria (CE) are a superset of Nash equi-
libria. They allow for dependencies amongst the the agents’
probability distributions, thus the optimization takes place
on the joint action space. Correlated equilibria are desired
solution concepts in resource allocation games, as they allow
for efficient and fair solutions by avoiding positive probabil-
ity mass on less desirable outcomes. Moreover, an optimal
correlated equilibrium for resource allocation games may
be found in polynomial time (Papadimitriou and Rough-
garden 2008). Subsequently, a central coordinator who pos-
sesses complete information can recommend an action to
each agent. Yet, an omniscient central coordinator is not al-
ways available, and in real-world applications with partial
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observability agents might not be willing to trust such rec-
ommendations. In a multi-agent scenario we are interested in
agents who are able to learn; adapt their strategies and con-
verge to an equilibrium. In order to be able to reach richer
solution concepts, like correlated equilibria, the agents re-
quire a common signal upon which they can learn to anti-
coordinate their actions. Hence the introduction of the envi-
ronmental context, proposed in Section 2.1.

3 Overview of Learning Approaches

In this section we will outline potential multi-agent learn-
ing approaches for tackling the anti-coordination problem.
We will examine bandit algorithms, reinforcement learn-
ing algorithms, and finally, symmetric equilibria for the re-
peated resource allocation game. We will focus on bimatrix
(2-agents, 1-resource) games since, in spite of their simple
form, they present many challenges in multi-agent learning
scenarios (Littman and Stone 2002).

3.1 Ad-hoc Coordination & Multi-armed Bandit
Algorithms

In ad-hoc multi-agent coordination the goal is to design au-
tonomous agents that achieve high flexibility and efficiency
in a setting that admits no prior coordination between the
participants (Stone et al. 2010). Typical scenarios include
the use of Monte Carlo algorithms (Barrett et al. 2017),
Bayesian learning (Albrecht, Crandall, and Ramamoorthy
2016), or bandit algorithms (Chakraborty et al. 2017), (Bar-
rett and Stone 2011). Traditionally, ad-hoc approaches suffer
from slow learning, which makes ad-hoc coordination a very
ambitious goal for real-life applications. Due to their ability
to learn from partial feedback, bandit algorithms would be
the natural choice for solving the anti-coordination problem
in an ad-hoc setting.

In multi-armed bandit problems an agent is given a num-
ber of arms and at each time-step has to decide which arm
to pull to get the maximum expected reward. Bandit (or no-
regret) algorithms typically minimize the total regret of each
agent, which is the difference between the expected received
payoff and the payoff of the best strategy in hindsight. Addi-
tionally, they satisfy incentive constraints for rational agents
since they constitute an approximate correlated or coarse
correlated equilibrium (Nisan et al. 2007). Nevertheless, the
studied problem presents many challenges: there is no sta-
tionary distribution (adversarial rewards), all agents are able
to learn (similar to recursive modeling), and yielding gives a
reward of 0 which might be a desirable option for minimiz-
ing regret, but not in respect to fairness.

To better understand these limitations, we evaluate three
state-of-the-art, well established adversarial bandit algo-
rithms, namely the EXP3 (Auer et al. 2002), the EXP4 (Auer
et al. 2002), and the EXP4.P (Beygelzimer et al. 2011). The
last two belong to a variant of multi-armed bandits, called
contextual bandits2, that is, at each time-step t, they can ex-
ploit the observed context kt ∈ K before making their de-
cision. As such, the chosen arm can be different depending

2See (Zhou 2015) for a survey on contextual bandits.

Figure 3: Resource utilization over time achieved by the em-
ployed bandit algorithms in the 1-resource, 2-agents alloca-
tion game of Figure 2 (x-axis in logarithmic scale).

on the context. Moreover, the EXP4.P combines the con-
fidence bounds of UCB1 (Auer, Cesa-Bianchi, and Fischer
2002) with the EXP4 to achieve the same regret as EXP4 but
with high probability. Figure 3 depicts the total utilization
of resources for the 1-resource, 2-agents allocation game of
Figure 2. The x-axis is in logarithmic scale, and the reported
values are the average over 128 runs of the same simula-
tion. The input parameters for the EXP family of algorithms
are set to their optimal values, as prescribed in (Auer et al.
2002), and (Beygelzimer et al. 2011), assuming time horizon
of T = 105 time-steps3. As depicted, all of the evaluated al-
gorithms take a significant number of time-steps to reach a
high utilization state, never achieve 100% efficiency, and ex-
hibit high variance.

Along with efficiency, we are interested in the fairness of
the final outcome. Being able to achieve both is of the utmost
importance for the adoption of such learning paradigms in
real-world applications. The evaluated bandit algorithms ex-
hibit considerably low fairness, specifically: JEXP3(w) =
0.50, JEXP4(w) = 0.76, JEXP4.P (w) = 0.73. As a matter
of fact, EXP3’s achieved fairness is equal to that of an unfair
asymmetric PNE: JPNE(w) = R

N = 0.5 = JEXP3(w).
The contextual bandits performed somewhat better but, con-
sidering the simplicity of the evaluated example, not good
enough. This leads to suggest that the evaluated contextual
bandit algorithms are unable to handle the large policy space
of anti-coordination games.

3.2 Reinforcement Learning & Replicator
Dynamics

Closely related to the bandit algorithms of Section 3.1 is
reinforcement learning. Reinforcement learning is based on
the concept of learning through the interactions with the en-
vironment. An agent takes an action, observes some feed-
back from the environment, and updates his policy so as to
maximize some notion of cumulative reward. The most em-
inent example of such an algorithm is Q-learning (Watkins

3Note the high sensitivity to the input parameter (γ ∈ (0, 1]),
which is another crucial shortcoming of the studied bandit algo-
rithms in ad-hoc scenarios.
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Figure 4: The replicator dynamics, plotted in the unit sim-
plex, for the 1-resource, 2-agents allocation game of Figure
2. x denotes the first agent’s probability of playing the first
action (Y), while y denotes the second agent’s probability of
playing the first action (Y). The probabilities of playing the
second action (A) are 1− x and 1− y respectively.

and Dayan 1992) which solves Bellman’s optimality equa-
tion (Bellman 2013) using an iterative approximation pro-
cedure. A detailed taxonomy of multi-agent reinforcement
learning algorithms can be found in (Busoniu, Babuska, and
De Schutter 2008).

There is a formal relationship between reinforcement
learning and the replicator dynamics of evolutionary game
theory (Bloembergen et al. 2015), hence reinforcement
learning algorithms can satisfy our incentive constraints.
Evolutionary game theory (EGT)4 differs from classical
game theory in that it focuses on the dynamics of the learn-
ing process (strategy change). In a multi-agent system in
which agents adapt their behavior in response to strategic in-
teractions with other agents, evolutionary game theory pro-
vides a solid mechanism to analyze and understand it (Tuyls
and Parsons 2007). Evolutionary game theory is built around
the replicator equations:

ẋi = xi

[
fi(x)− φ(x)

]
(3)

Equation 3 describes the evolution of a population (x) of
individuals (xi) over time, or alternatively (and more be-
fitting to multi-agent learning), the evolution of an agent’s
strategy x = (x1, . . . , xR)

�. In the latter interpretation, the
population share of each type (xi : 0 ≤ xi ≤ 1, ∀i) rep-
resents the probability of selecting action ai, fi(x) is the
fitness (utility) of action ai, φ(x) =

∑
j xjfj(x) is the

weighted average fitness, and ẋi = dxi/dt. For the the two
agent game of Figure 2, we can rewrite Equation 3 for the
strategy vector of the first agent x as:

ẋi = xi

[
(Uy)i − x�Uy

]
(4)

where U is the payoff matrix (similar for y).
Finding the optimal policy in a multi-agent system where

all agents learn simultaneously is inherently more complex.
Each agent is faced with a moving-target learning problem.

4See (Gintis 2000) for an introduction to EGT.

Figure 5: Resource utilization over time achieved by Q-
learning in the 1-resource, 2-agents allocation game of Fig-
ure 2 (x-axis in logarithmic scale).

Changes in the policy of one agent can affect the rewards and
thus have a cascading effect on the optimal policies of the
others. Furthermore, just as with the bandit algorithms, the
adaptation of such dynamics in real-world multi-agent prob-
lems requires fairness guarantees. An insight to the quality
of the final allocation can be provided by examining the
replicator dynamics (Equation 4) of the simple 1-resource,
2-agents allocation game of Figure 2, depicted in Figure 4.
As seen by the plot, the two evolutionary stable strategies are
the two unfair asymmetric PNE, (Y, A) and (A, Y). More-
over, Figure 5 depicts the total utilization of resources of
two Q-learning approaches (the reported values are the av-
erage over 128 runs of the same simulation). The Q1 ap-
proach uses the context as its state, while the Q2 approach
uses both the context and the former action as the state. The
intuition behind Q2 is to enable the learning of a possibly
more fair multi-step best respond, i.e. investigate the pos-
sibility of learning a correlated equilibrium where the two
agents alternate between accessing and yielding. The Q ta-
ble is updated according to Equation 5:

Q(s, a) = α(u+ δmax
a′

Q(s′, a′)) + (1− α)Q(s, a) (5)

where α is the learning rate, δ the discount factor, and
s, s′, a, u the state, next state, action, and utility (reward) re-
spectively. Both approaches select their actions according to
an ε-greedy policy (as in (Littman and Stone 2002)), i.e. in
state s, with probability ε they choose a random action, while
with probability 1 − ε they take action argmaxa Q(s, a).
The algorithm’s performance is highly sensitive to the afore-
mentioned parameters. We have identified two interesting
scenarios, presented in Figure 5. Setting α = 0.75 and
ε = 0.01 results in higher efficiency and lower variance,
but lower fairness (JQ1(w) = 0.64, and JQ2(w) = 0.83).
On the other hand, α = 0.5 and ε = 0.075 results in
lower efficiency and higher variance (due to the increased
randomness), but higher fairness (JQ1

(w) = 0.82, and
JQ2

(w) = 0.89). The above are true for both approaches
(Q1, and Q2).

The aforementioned results of Figure 5 suggest that by in-
corporating a larger state space (i.e. using the common con-
text and the former action) we can achieve better results than
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the replicator dynamics indicated. Given a broad enough
state space, Q-learning can learn a multi step best response
(Littman and Stone 2002). Nevertheless, in both cases, both
approaches require a significant number of time-steps to
reach a high utilization state. As such, reinforcement learn-
ing in anti-coordination scenarios faces similar shortcom-
ings as bandit algorithms, albeit it seems to achieve higher
fairness in the evaluated example. Furthermore, it is worth
noting that basic reinforcement learning algorithms like Q-
learning, compute quantity values for each possible state or
state-action pair. As mentioned, mapping anti-coordination
to the consensus problem results in an exponential expan-
sion of the solution space, thus in an exponential increase
of the computational and memory complexity for the rein-
forcement learning algorithms as well. The latter constitutes
such approaches infeasible for real-world applications.

Instantiations of a correlated equilibrium can be achieved
via reinforcement learning. One example is Correlated Q-
learning (Greenwald, Hall, and Serrano 2003), albeit it re-
quires the sharing of Q-tables amongst the agents. The latter
necessitates either to allow full observability, or a central
planner, neither of which is feasible in ah-hoc scenarios.

3.3 Symmetric Strategies & The Price of
Anonymity

The two agent resource allocation game of Figure 2 is an in-
herently symmetric game, yet the only efficient Nash equi-
libria are asymmetric; one agent yields while the other ac-
cesses, achieving 100% efficiency. Asymmetric equilibria
of symmetric games are undesirable for two reasons. First,
they are unfair and second they require possibly identical
agents to differentiate their actions (and thus learning rules).
The symmetric MNE (access with probability 1

|ζ|+1 ) on the
other hand achieves 0% efficiency. The Price of Anonymity
(Cigler and Faltings 2014) allows us to measure the degrada-
tion of the system’s efficiency (social welfare) due to the re-
quirement of symmetry imposed by anonymity. In an anony-
mous game agents do not distinguish between other agents,
i.e. agents have different utilities but an agent’s utility de-
pends only on its own strategy and the number of other
agents that chose the same strategy, and not on their identi-
ties (Nisan et al. 2007). The Price of Anonymity is the ratio
between the optimal social payoff of any (possibly asym-
metric) equilibrium and the expected social payoff of the
worst symmetric equilibrium. In this example, the price of
anonymity is infinite. Nevertheless, it is possible to have so-
lution concepts that are symmetric and efficient by making
use of correlated equilibria (Aumann 1974).

Cigler and Faltings developed a symmetric learning rule
for reaching an efficient and fair correlated equilibrium of
the repeated resource allocation game (Cigler and Faltings
2013). By exploiting the history of their interactions along
with the environmental context as a correlation mechanism,
the agents are able to learn to coordinate their accesses. Each
agent n has a strategy gn : K → {0} ∪ R which maps con-
text to resources. As the algorithm progresses, agents who
have successfully accessed a resource (un(an, a−n) = 1)
for a given context value k ∈ K will continue to access the

Algorithm 1 Pseudo-code of (Cigler and Faltings 2013).

Require: ∀n ∈ N initialize gn u.a.r. in R.
1: Agents observe context kt ∈ K.
2: if gn(kt) > 0 then
3: Agent n accesses resource r ← gn(kt).
4: if Collision(r) then
5: Set gn(kt) ← 0 with probability pbackoffn .
6: end if
7: else if gn(kt) = 0 then
8: Agent n monitors random resource r ∈ R.
9: if Free(r) then

10: Set gn(kt) ← r with probability 1.
11: end if
12: end if

Figure 6: Resource utilization over time of CA3NONY vs.
EXP3, Q1, and Q2 in the 1-resource, 2-agents allocation
game of Figure 2 (x-axis in logarithmic scale).

same resource every time they observe the same context k.
Agents who have not accessed a resource for a given context
value k will not attempt to access an occupied resource. If
there is a collision, the colliding parties will back-off with
probability pbackoffn . Algorithm 1 provides the pseudo-code
of the allocation algorithm.

Algorithm 1 is only applicable in cooperative scenarios.
A self-interested agent could stubbornly keep accessing a
resource forever, until everyone else backs off (also known
as ‘bully’ strategy (Littman and Stone 2002)5). There ex-
ist equilibrium back-off probabilities, but in order to actu-
ally play them, the agents need to be able to calculate them.
It is not always possible to obtain the closed form of the
back-off probability distribution of each resource. We have
build upon the ideas of (Cigler and Faltings 2013) and pro-
posed instead the adoption of a human-inspired convention
of courtesy, which prescribes a constant positive back-off
probability in case of collision (pbackoffn = p > 0, ∀n ∈
N ). Coupled with a bookkeeping scheme and punishments
for deviating agents, we have proven that adhering to the al-
gorithm is a best-response strategy at each sub-game of the
original stage game, given any history of the play. The devel-
oped an anti-coordination framework (CA3NONY (Danas-

5Such strategies similarly affect Q-learning (Littman and Stone
2002) and bandit algorithms.
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sis and Faltings 2018)) still follows to the simple learning
rule of Algorithm 1, which allows for fast convergence and
its applicability to large scale multi-agent systems.

To verify its performance, Figure 6 depicts the total uti-
lization of resources for the simple 1-resource, 2-agents al-
location game of Figure 2, while Figure 7 compares the con-
vergence time of CA3NONY to the fastest of the presented
algorithms (EXP3, Q1, and Q2) for increasing number of
resources R (N = 2 × R). In every case we report the av-
erage value over 128 runs of the same simulation. Note that
in the first graph, the x-axis is in logarithmic scale, while
the second graph is in double logarithmic scale and the er-
ror bars represent one standard deviation of uncertainty. For
the second simulation (Figure 7), we chose a high enough
time horizon (= 108) to facilitate EXP3 in achieving the
convergence criterion (≥ 90% efficiency) in larger simula-
tions (R > 64). Nevertheless, it was unable to do so for
R > 256, hence the gaps in the EXP3’s lines in Figure 7.
For the same reason (again regarding Figure 7), we set Q1

and Q2’s parameters as α = 0.75 and ε = 0.001. The high
learning rate and low randomness were necessary, otherwise
Q1 and Q2 were unable to reach high utilization. As de-
picted, CA3NONY is significantly faster than both the ban-
dit and Q-learning algorithms, exhibits lower variance, and
can gracefully handle increasing number of resources. In ad-
dition to being efficient, CA3NONY converges to a fair allo-
cation JCA3NONY (w) = 1. Fairness plays an important role,
especially in scenarios with scarcity of resources. If the final
allocation is fair, rational agents will be more willing to ad-
here to the protocol and wait for their turn. Under low fair-
ness, the competition between rational agents is increased,
which in turn slows down convergence. In Figure 7, the two
Q-learning approaches (especially Q1) might look appealing
from the perspective of scalability, but both result in consid-
erably low fairness (lower on average than an unfair PNE).
For any number of resources, JQ1

(w) ∈ [0.45, 0.52], with
a mean value of 0.48, while JQ2

(w) ∈ [0.37, 0.48], with a
mean value of 0.44. Thus, both Q-learning approaches con-
verge to a situation similar to an unfair PNE. In repeated
games though, rational agents might not be willing to con-
cede to a PNE (as in the ‘bully’ strategy of (Littman and
Stone 2002)). Finally, CA3NONY provides higher average
payoff for the agents (45.09 for CA3NONY vs. −50.54 for
the EXP3, −79.03 for Q1, and −84.08 for Q2 in the scenario
of Figure 6, assuming collision cost ζ = −1), which is an
essential indicator of the algorithms individual performance.
The latter constitute CA3NONY a promising framework for
real-life applications.

4 Conclusion
The relevance of anti-coordination in multi-agent scenarios
stems from the need of sharing (possibly) indivisible, lim-
ited resources. The curse of dimensionality encompassing
the mapping of anti-coordination problems to the classical
consensus problem along with the non-stationarity arisen
from the simultaneous learning of all the participants make
achieving a desirable outcome even more challenging. Fur-
thermore, contrary to coordination problems which are typ-
ically encountered in cooperative settings, anti-coordination

Figure 7: Convergence time of CA3NONY vs. EXP3, Q1,
and Q2 for increasing number of resources R, N = 2 × R
(double logarithmic scale).

deals mostly with self-interested, rational agents. Rational
agents are able to manipulate the algorithm to maximize
their own utility, which brings forth the need for develop-
ing algorithms resilient to such manipulations. Ultimately,
anti-coordination boils down to incentivizing participants to
systematically and consistently adopt less desirable actions,
albeit in a way that ensures high efficiency and fairness in
the final outcome.

In this paper, we presented a brief overview of multi-
agent learning dynamics for the anti-coordination problem,
to increase interest and motivate research in the area. We fo-
cused on satisfying incentive constraints, efficiency, fairness
and convergence speed. Specifically, we examined bandit
algorithms, reinforcement learning, and symmetric strate-
gies for the repeated resource allocation game. We demon-
strated that most of the classical, well-established multi-
agent learning techniques suffer from slow convergence rate
and/or poor fairness. An exception to that is CA3NONY , an
anti-coordination framework based on the human-inspired
convention of courtesy. Contrary to the aforementioned ap-
proaches, CA3NONY is able to reach efficient and fair allo-
cations in polynomial time. Moreover, adhering to the pro-
tocol constitutes a rational strategy. The latter suggests that
human-inspired conventions may prove beneficial in other
ad-hoc coordination scenarios as well. An interesting future
direction would be to combine well-established multi-agent
learning techniques with simple conventions (e.g. allowing
others to acquire a resource first (courtesy convention), or
maintaining the acquired resource after convergence) for
solving more complex anti-coordination problems.

Finally, a generalization of anti-coordination games,
called dispersion games, was described in (Grenager, Pow-
ers, and Shoham 2002). In a dispersion game, agents are
able to choose from several actions, favoring the one that
was chosen by the smallest number of agents (analogous to
minority games (Challet et al. 2013)). In (Grenager, Pow-
ers, and Shoham 2002) the agents do not have any particular
preference for the attained equilibrium. Contrary to that, we
are interested in achieving an efficient and fair outcome. Ex-
panding the studied techniques to tackle dispersion games,
and therefore non-binary utilities, would be another interest-
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ing avenue for future research.
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