
Parallel Application Placement onto 3-D
Reconfigurable Architectures

Panayiotis Danassis∗, Kostas Siozios† and Dimitrios Soudris‡
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Email: ∗panosd@microlab.ntua.gr, †ksiop@microlab.ntua.gr, ‡dsoudris@microlab.ntua.gr

Abstract—Placement is considered one of the most arduous
and time-consuming processes in physical implementation flows
for reconfigurable architectures, while it highly affects the quality
of derived application implementation as it is tightly firmed to the
total wirelength and hence the maximum operating frequency.
This problem becomes more acute for three-dimensional (3-D)
architectures since the complexity of such architectures imposes
additional challenges that have to be sufficiently addressed.
Throughout this paper we introduce a novel placement algo-
rithm, targeting 3-D reconfigurable architectures, based on Ant
Colony Optimization (ACO). Experimental results validate the
effectiveness of our algorithm since it achieves 10% reduction
in the critical path delay on average. Additionally, in contrast
to relevant approaches which are executed sequentially, the
proposed algorithm exhibits inherent parallelism and can take
full advantage of today’s multi-core architectures.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have become
the implementation medium for the majority of digital circuits.
For decades, semiconductor manufacturers have been shrinking
the size of the transistors to achieve the yearly increase in
performance, as described by Moore’s Law, which exists only
because the RC delay used to be negligible as compared to the
signal propagation delay. For sub-micron technology, however,
that is not the case. Furthermore, previous studies have shown
that at 130nm technology node, approximately 51% of the
microprocessor’s power is consumed by the interconnect fabric
[1]. This has generated many discussions concerning the end
of device scaling as we know it, and has hastened the search
for solutions beyond the perceived limits of the current 2-D
devices.

Three dimensional (3-D) chip stacking is considered by
many as the silver bullet technology that will accommodate
the aforementioned shortcomings [2]. Stacking multiple dies in
the vertical axis and interconnecting them using very fine-pitch
Through Silicon Vias (TSVs) enables the creation of chips with
shorter interconnect, on average, which in turn leads to reduced
signal propagation delay [2], [3]. Additionally, stacking smaller
dies rather than manufacturing a large planar yields significant
cost improvements.

The benefits of using 3-D integration are especially great
for designing FPGAs since these architectures suffer from data
communication problems; interconnection delay and power
consumption are the main bottlenecks in such architectures.
However, in order for such technologies to be widely accepted,
several challenges have to be satisfied. As a result, there
is an ever growing need for more efficient CAD tools that
support application mapping onto 3-D platforms and are able to

Fig. 1: Architectural template of the proposed 3-D FPGA.

produce results in a reasonable execution run-time. Throughout
this paper we introduce a novel algorithm, based on Ant
Colony Optimization (ACO) [4], for addressing the placement
problem on such architectures.

The rest of the paper is organized as follows: Section ??
describes the architecture of the underlying 3-D FPGA, Section
III presents the proposed algorithm and Section IV provides
a number of qualitative results to prove its efficiency. Finally
Section V concludes the paper.

II. ARCHITECTURAL TEMPLATE OF THE TARGETED 3-D
FPGA

The proposed architectural template that targets to alleviate
the impact of long wire-lengths is depicted in Figure 1.
Note that the architectural template discussed in this paper is
orthogonal to the rest of the approaches for 3-D FPGAs. Each
layer of the FPGA is based on an island-style architecture.
The communication between resources assigned to different
layers is provided by vertically aligned TSVs. These TSVs
are implemented inside the Switch Boxes (SBs), which are
appropriately extended in order to be aware of the third
dimension [5]. This kind of connectivity provides routing paths
(depicted in dotted lines) between SBs assigned to adjacent
layers with the same (x, y) coordinates.

Regarding the modeling of the remaining hardware re-
sources (e.g. TSVs, routing wires, transistors, etc), we follow
a similar approach to the one found in relevant literature
[6]. Note that the selection of the employed values for the
architectural components do not affect the generality of the
introduced solution, which is applicable to other flavors of 3-
D integration as well (such as the 2.5-D provided by Xilinx).

978-1-4673-9680-6/16/$31.00 ©2016 IEEE

2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST)

III. 3-D FPGA PLACER BASED ON ACO

In this section we introduce the proposed algorithm for
addressing the placement problem on 3-D reconfigurable ar-
chitectures. Our approach relies on Ant Colony Optimization
(ACO). It is a novel, swarm-intelligence based algorithm, that
mimics the foraging behavior of certain species of ants in
order to find a high quality placement in regard to legality
constrains and optimization goals. The inherent parallelism of
the ACO algorithms, the flexibility they provide in regard to
integrating different cost functions or FPGA architectures and
the fact that they combine a positive feedback mechanism and a
stochastic decision policy which account for rapid discovery of
good solutions are just some of the strengths that make ACO
algorithms a good fit for the problem of FPGA placement.
The pseudo-code for our ACO-based placer is presented in
Algorithm 1.

Algorithm 1 Pseudo-code of our ACO-based placer.

1: while (!termination condition()) {
2: for (n = 1; n ≤ n ants; n++) {
3: construct solution(ant[n]);
4: compute placement quality(ant[n]);
5: compare best so far ant(ant[n]);
6: local pheromone update(ant[n]);
7: }
8: global pheromone update();
9: iteration++;

10: }

Several ACO algorithms have been proposed in the liter-
ature [4]. Our implementation incorporates concepts from the
MAX − MIN Ant System (MMAS) and the Ant Colony
System (ACS). The functionality of our introduced algorithm
can be summarized as follows: In every iteration, each ant
in the colony constructs a solution from scratch. To do so,
every ant[n] assigns block i to a physical location j on
layer k using a pseudorandom proportional rule (Eq. 1) which
utilizes pheromone trails and heuristic information. As a result,
all the blocks in the circuit netlist will be mapped to a
specific location on the FPGA. Succeeding the construction
of a solution, each ant evaluates the quality of its solution and
based on that quality it decides on how much pheromone to
deposit on the utilized components or connections. The update
of the pheromone trails consist of both evaporation and new
pheromone deposition. Subsequent ants use this information
to guide their search towards promising solutions. Thus, good-
quality solutions emerge as the result of the collective inter-
action among the ants. The process continues until one of the
termination conditions is met. Summarizing:

• A colony of artificial ants moves concurrently, asyn-
chronously and independently on the construction
graph, incrementally building solutions for the place-
ment problem.

• In order to move around the graph they use a
stochastic local decision policy that makes use of the
pheromone trails and the heuristic information.

• Based on the quality of the solution, each ant deposits
different amounts of pheromone. In doing so they

Application Description in HDL

Synthesis

Technology Mapping

Partitioning

Placement

Routing

Evaluation

Placement

Routing

Platform Partition

Partition to Layer Assignment

Layer Ordering

2-D 3-D

3-D platform agnostic

3-D platform aware

Fig. 2: Toolflow for application mapping onto 3-D FPGAs.

adaptively modify the way the problem is represented
and perceived by other ants.

In the following subsections we provide additional tech-
nical details regarding the different aspects of the employed
ACO algorithm.

A. Heuristic Information & Pheromone Trails

The heuristic information is used to guide the ants in the
early stages of the algorithm, before the collected pheromone
starts to take effect. Even though convergence is guaranteed
[4], the time to convergence is uncertain. That is why we need
a good heuristic metric to speedup the process during the initial
construction steps. In this implementation we introduce two
types of heuristic information: a static one, which is a priori
defined and tends to place more centric blocks that connect
to many other blocks [7] and a dynamic one which is more
aggressive and tries to minimize the Manhattan distance of
blocks of the same net.

After some iterations, the collective knowledge of the ants
is incorporated into the pheromone trails. The initialization of
those trails plays a determinant role in the performance of the
algorithm and the speed of convergence. The formula we used
to initialize them is τ0 = 1/ρC∗, where C∗ is the cost of the
best placement we forecast (approximately 40% of the initial
cost) and ρ the evaporation rate, since we estimate that in the
long run, the upper pheromone trail limit on any component
is bounded by 1/ρC∗.

For each possible assignment of a netlist block i to a
physical location j on a layer k we have a heuristic value
ηijk and a pheromone value τijk.

B. Solution Construction

In Figure 2 we present the design process for application
mapping onto 3-D Reconfigurable Architectures. One of the
key advantages of our implementation is the ability to incor-
porate in the solution construction phase both the stages of
partitioning and placement and as a result has the potential
to arrive at superior placement solutions. In the solution
construction phase we use the pseudorandom proportional rule
from ACS. In particular, the probability with which ant m
places the netlist block i to the physical spot j on the layer k
is given by Equation 1:

2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST)

pmijk =
[τijk]

α × [ηijk]
β∑

(y,z)∈Nm

[τiyz]α × [ηiyz]β
(1)

where α, β are parameters, and Nm is the set of available
positions that ant m has in its disposition. To speedup the
process, Equation 1 is used to map only a portion of the blocks.
Specifically we use Equation 1 with probability (1−q0), were
q0 is a parameter, while with probability q0 we use Equation
2 which maps block i to the best location found so far J on
layer K. As a result with probability q0 the ant makes the
best possible move as indicated by the learned pheromone
(τijk) and heuristic (ηijk) information (exploitation), while
with probability (1 − q0) it performs a biased exploration.
Tuning the parameter q0 allows modulation of the degree of
exploration and the aggressiveness of the system.

(J,K) = argmax
(y,z)∈Nm

{
[τiyz]

α × [ηiyz]
β

}
(2)

This random proportional rule is analogous to the “Roulette
Wheel” selection method [8] used in genetic algorithms in
the sense that fittest individuals (the ones who in the past
have produced hight quality solutions) have a larger share
of the roulette wheel (higher pheromone values) and as a
result greater probability to be chosen again, where weakest
individuals occupy smaller share of the roulette wheel (lower
pheromone values) and have smaller probability to be chosen.

C. Cost Function

After every block of the netlist has been successfully placed
by an ant, it is time to evaluate the placement’s quality. Here
the optimization goals that we used were the minimization of
the total wire-length (wiringCost) and the minimization of
the delay of the circuit (TimingCost). The cost function is
presented in Equation 3 and can be found in more detail in
[6]. It is widely accepted and it is proved to be an effective
way to evaluate a placement’s quality.

Cost = λ× timingCost+ (1− λ)× wiringCost (3)

D. Pheromone Update

Finally, we have the process of the pheromone update. The
aim of this stage is to reinforce the trails associated with good
solutions while, using the evaporation mechanism, decrease
the ones that produced poor solutions. We have two stages of
pheromone update: a local and a global one.

The global pheromone update stage is performed at the
end of every iteration and implements the evaporation and the
new pheromone deposition process using Equation 4. On the
other hand the local pheromone rule is applied after an ant
constructs a complete placement to discourage subsequent ants
of the same iteration from constructing a similar placement,
effectively increasing the exploration space.

Fig. 3: Critical Path Delay.

τ ′ijk =

τmin if τ ′ijk < τmin
(1− ρ)× τijk + 1

Costbest
if antbest maps i→ (j, k)

(1− ρ)× τijk otherwise
τmax if τ ′ijk > τmax

(4)

E. Parallel Implementation

Since ants move concurrently and asynchronously, ACO
algorithms are inherently parallelizable both in the data and
population domains [4]. Although the use of the local update
rule of the ACS can lead to communication overhead, we
can overcome this by implementing a coarse-grained approach
with rather rare information exchange. In other words, for the
parallel implementation we disregarded the local pheromone
update rule and let all the ants move in parallel, exchanging
information only at the end of every iteration. Due to the use
of a much larger colony in parallel implementations, there
were no considerable disadvantages from the omission of the
local update rule, since the much larger number of ants can
effectively search a much greater solution space. That led to
a very simple implementation with considerable benefits in
runtime.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The targeted 3-D FPGA consists of two to five layers, with
identical logic and routing resources among these layers and
six TSVs per 3-D SB. The introduced ACO-based placer was
integrated as part of the open-source toolflow 3-D MEANDER
[5]. The measurements were taken using a set of 10 MCNC
benchmarks. For the reference solution we employed the TPR
tool [9]. Note that both the above tools perform netlist routing
using the negotiated pathfinder algorithm. Consequently, we
expect that performance improvement is based only on the dif-
ferent placement algorithms. The experiments were performed
on an Intel Core 2 Quad CPU Q9400 clocked at 2.66GHz. Four
different colonies were utilized that concurrently searched for
a good placement solution. In the end the best one was chosen.

2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST)

Fig. 4: Number of bends.

Fig. 5: TSV utilization.

B. Experimental Results

Our algorithm achieves 32% reduction of the maximum
net length and 29% reduction of the maximum segments used
by a net, on average. As a result we achieve 10% reduction
of the critical path delay, on average, as depicted in Figure 3
which gives the critical path delay normalized to the reference
solution. Hence, besides the increase of the maximum oper-
ating frequency, we expect to have an improvement in power
consumption. At the same time we achieve 30% improvement
in the maximum number of bends, as depicted in Figure 4. That
leads to fewer transistors inside the switch boxes (SBs) and
as a result lower fabrication cost. Furthermore our algorithm
achieves a better manipulation of the available resources,
compared to existing tools, since it presents 10% lower TSV
utilization, on average, even though it achieves smaller critical
path delay. The TSV utilization is presented in Figure 5.

By taking advantage of the inherent parallelism of our
algorithm and the existing multi-core platforms we can consid-
erably reduce the execution run-time. Figure 6 depicts the on
average speedup achieved in a 2-core and a 4-core processor
with identical clock frequency. The results are normalized
over the corresponding single-core and single-thread execution.
As illustrated, our proposed algorithm achieves almost a 3×

Fig. 6: Multi-core speedup.

speedup on a 4-core CPU, allowing it to take take full ad-
vantage of today’s multi-core architectures. Hence by utilizing
the inherent parallelism we can either keep the run-time in
check, produce higher quality results in the same run-time or
a combination of both, depending on our needs.

V. CONCLUSION

In this paper we introduced a novel 3-D FPGA placer.
As mentioned, our algorithm achieves 10% reduction on the
critical path delay, on average. Moreover by utilizing it’s
inherent parallelism, we can take full advantage of today’s
multi-core architectures, further decreasing the execution run-
time as multi-core CPUs scale according to today’s market
trends.

ACKNOWLEDGMENTS

This work has been partially supported by the TEACHER
project which is funded by the DAAD (2014).

REFERENCES

[1] N. Magen, A. Kolodny, U. C. Weiser, and N. Shamir, “Interconnect-
power dissipation in a microprocessor.” in SLIP, L. Scheffer and I. L.
Markov, Eds. ACM, 2004, pp. 7–13.

[2] V. F. Pavlidis and E. G. Friedman, Three-dimensional Integrated Circuit
Design. USA: Morgan Kaufmann Publishers Inc., 2009.

[3] A. Papanikolaou, D. Soudris, and R. Radojcic, Three Dimensional System
Integration: IC Stacking Process and Design, ser. SpringerLink : Bücher.
Springer, 2010.

[4] M. Dorigo and T. Stützle, Ant Colony Optimization. USA: Bradford
Company, 2004.

[5] K. Siozios, V. F. Pavlidis, and D. Soudris, “A novel framework for
exploring 3-d fpgas with heterogeneous interconnect fabric,” ACM Trans.
Reconfigurable Technol. Syst., vol. 5, no. 1, pp. 4:1–4:23, Mar. 2012.

[6] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for
Deep-Submicron FPGAs. USA: Kluwer Academic Publishers, 1999.

[7] W. Xu, K. Xu, and X. Xu, “A novel placement algorithm for symmetrical
fpga,” in 7th Int. Conf. on, Oct 2007, pp. 1281–1284.

[8] M. Mitchell, An Introduction to Genetic Algorithms. USA: MIT Press,
1998.

[9] C. Ababei, “Tpr: Three-d place and route for fpgas.” in FPL, ser.
Lecture Notes in Computer Science, J. Becker, M. Platzner, and
S. Vernalde, Eds., vol. 3203. Springer, 2004, p. 1172. [Online].
Available: http://dblp.uni-trier.de/db/conf/fpl/fpl2004.html#Ababei04

2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST)

